PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
Nitrobindin
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
Phytochrome
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
Secretagogin
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
Aquaglyceroporin
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
T-Rex
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
Chronophin
May 2008

Research Themes Cell biology

A new class of bacterial E3 ubiquitination enzymes

PSI-SGKB [doi:10.1038/fa_psisgkb.2008.21]
Featured Article - January 2009
Short description: A structurally and mechanically distinct class of ubiquitin ligases has been discovered, and a single mutation changes this enzyme from a ligase to a potent thioesterase.Nature Struct. Mol. Biol. 15, 1293-1301 (2008)

Surface representation of the C-terminal domain of IpaH1.4 with the partially transparent surface enclosing a ribbon representation of the molecule. Image courtesy of Ontario Centre for Structural Proteomics. (IpaH1.4 PDB 3CKD; IpaH3 PDB 3CVR

Shigella flexneri is a food-borne bacterium that causes dysentery in humans. It does this by injecting effector proteins into the cells of its host by way of the bacterium's type III secretion system. One group of these effectors are the IpaH proteins, which affect the host cell's ubiquitination pathway, an emerging target of pathogenic bacteria.

Ubiquitination is involved in many different processes within the cell, most commonly as a tag that targets a protein for degradation in a proteasome. The addition of one or several ubiquitin molecules to a target protein requires a three-enzyme cascade. The C-terminal glycine residue of ubiquitin is first charged via a highly reactive thioester linkage to a cysteine residue in a ubiquitin-activating enzyme (E1). The E1-bound ubiquitin is then transferred to a cysteine residue on a ubiquitin-conjugating enzyme (E2). Finally, ubiquitin ligase (E3) brings the substrate and ubiquitin together, enabling the transfer of ubiquitin to a lysine residue on the substrate.

IpaH proteins have previously been shown to have ubiquitin ligase (E3) activity, but as the sequence of their C-terminal domain did not resemble that of any known E3s the nature and mechanism of this reaction was not clear.

It was thought that E3s fell into one of two classes. The first class have the RING (really interesting new gene) motif or a modified form of it, and they act as adaptors, bringing ubiquitin-charged E2 and the substrate close enough together to promote ubiquitination. The second class has a HECT (homologous to E6-associated protein C terminus) domain, which has an essential cysteine that acts as an acceptor for ubiquitin before its transfer to the substrate.

Two groups now report the structure of two IpaH proteins and provide biochemical insight into how these proteins work. Zhu et al. 1 solved the full-length structure of IpaH3 and Singer et al. 2 solved the C-terminal domain of IpaH1.4, whose sequence is almost identical to the C-terminal domains of all Shigella IpaH proteins. Both groups show that the C-terminal domain contains the catalytic activity for ubiquitin transfer and that this C-terminal domain has an all-helical fold with considerable flexibility that bears no resemblance to other E3 ubiquitin ligases. PSI MCSG contributed to the work of Singer et al.

Both groups demonstrated that Cys363 is essential for the ligase activity. Zhu et al. showed that it acts as a nucleophile to catalyze ubiquitin transfer through a transthiolation reaction and Singer et al. examined the effect in sst2Δ yeast of mutating this residue to an inactive cysteine. In sst2Δ yeast, the pheromone-response pathway is disrupted when the target of the ligase, Ste7, is ubiquitinated and degraded; this serves as a useful marker for IpaH's effects.

The results from both groups strongly suggest that IpaH enzymes use Cys363 as an acceptor of ubiquitin from E2s and then transfer the ubiquitin to a target protein.

In addition to the active-site cysteine, both groups identified other residues important for activity. Surprisingly, Zhu et al. found that replacing Asp365 with asparagine increased the speed of hydrolysis of ubiquitin charged with the E2 enzyme UbcH5c and detected increased amounts of free ubiquitin. This activity seems to require Cys363, as a double mutation of the cysteine and Asp365 was completely inactive. This is the first example of a single mutation turning an E3 ligase into a ubiquitin-E2 thioesterase.

These findings raise the question of whether there are other E3s waiting to be identified in prokaryotes.

Maria Hodges

References

  1. Singer lexander U., Rohde John R., Lam Robert, Skarina Tatiana, Kagan Olga et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases.
    Nature Struct. Mol. Biol. 15, 1293-1301 (2008).

  2. Zhu Yongqun, Li Hongtao, Hu Liyan, Wang Jiayi, Zhou Yan et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases.
    Nature Struct. Mol. Biol. 15, 1302-1308 (2008).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health