PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
CCR5 and HIV Infection
January 2015
HIV/AIDS: Pre-fusion Env Exposed
January 2015
HIV/AIDS: Slide to Enter
January 2015
Updating ModBase
January 2015
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Bacterial CDI Toxins
June 2014
Immunity: One Antibody to Rule Them All
June 2014
Virology: A Bat Influenza Hemagglutinin
March 2014
Virology: Making Sensitive Magic
March 2014
Virology: Visualizing Cyanophage Assembly
March 2014
Virology: Zeroing in on HBV Egress
March 2014
Viroporins
March 2014
Cas4 Nuclease and Bacterial Immunity
February 2014
Microbial Pathogenesis: A GNAT from Pseudomonas
February 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Microbiome: The Dynamics of Infection
September 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Infectious Diseases: A Pathogen Ubiquitin Ligase
May 2013
Infectious Diseases: A Shared Syringe
May 2013
Infectious Diseases: Determining the Essential Structome
May 2013
Infectious Diseases: Targeting Meningitis
May 2013
NDM-1 and Antibiotics
May 2013
Bacterial Hemophores
January 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Microbial Pathogenesis: NEAT Iron
January 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
A signal sensing switch
September 2012
Gauging needle structure
July 2012
Anthrax Stealth Siderophores
June 2012
A Pseudomonas L-serine dehydrogenase
May 2012
Pilus Assembly Protein TadZ
April 2012
Making Lipopolysaccharide
January 2012
Superbugs and Antibiotic Resistance
December 2011
A change to resistance
November 2011
An effective and cooperative dimer
November 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
Breaking down the defenses
September 2011
Moving some metal
August 2011
Capsid assembly in motion
April 2011
Know thy enemy … structurally
October 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Hemolysin BL
January 2010
Unusual cell division
October 2009
Anthrax evasion tactics
September 2009
Toxin-antitoxin VapBC-5
September 2009
Antibiotic target
August 2009
Lysostaphin
July 2009
Tackling influenza
June 2009
You look familiar: the Type VI secretion system
June 2009
Unique SARS
April 2009
Anthrax stealth molecule
March 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Antiviral evasion
October 2008
SARS connections
September 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes Infectious diseases

Anthrax stealth molecule

PSI-SGKB [doi:10.1038/fa_psisgkb.2009.10]
Featured Article - March 2009
Short description: Bacillus anthracis relies on an unusual metabolite to evade human innate immunity and to be fully virulent in the host.Proc. Natl Acad. Sci. USA 105, 17133-17138 (2008)

Bacillus anthracis is a highly virulent microbe that causes the disease anthrax and has been used for bioterrorism. As part of its pathogenic armory, it produces an iron-chelating compound (a siderophore) called petrobactin, which is involved in ferric iron uptake by the bacterium and is essential for maximum virulence in mammals.

The petrobactin molecule is synthesized from citrate, spermidine and an unusual 3,4-isomer of dihydroxybenzoic acid, 3,4-DHBA, which forms the iron-chelating moiety. The 2,3-DHBA isomer is more common in bacterial siderophores, but its action can be blocked by the human innate immune system. Humans produce a protein, siderocalin, that can sequester 2,3-DHBA, thus preventing iron uptake by pathogens.

Unfortunately, siderocalin does not act on 3,4-DHBA, which gives B. anthracis a growth advantage over other pathogens. So, understanding how 3,4-DHBA is synthesized might reveal a weakness that could be exploited by antimicrobial drugs.

The asbF gene of B. anthracis had previously been shown to be essential for 3,4-DHBA synthesis. Extending their previous work, Pfleger et al. 1 , in collaboration with PSI MCSG [www.mcsg.anl.gov], now identify the enzymatic activity of the AsbF protein as a 3-dehydroshikimate (DHS) dehydratase and show that it converts the common bacterial metabolite 3-DHS to 3,4-DHBA. To produce the necessary amounts of AsbF protein to identify its activity and determine its structure, they expressed the B. anthracis asbF gene in Escherichia coli.

Pfleger et al. show that the reaction product of purified recombinant AbsF acting on the candidate substrate 3-DHS has an absorbance maximum at 290 nm, which corresponds to a DHBA chromophore, and confirmed this by mass spectrometry. Biochemical analysis revealed that the AbsF-catalyzed reaction was inhibited by the metal chelator EDTA, and fluorescence scanning of crystallized recombinant AbsF indicated that manganese is the predominant enzyme-bound metal.

The team then solved the crystal structure of AbsF bound to 3,4-DHBA. The structure is a (β/α)8-barrel (TIM) barrel; its N terminus is partially buried at the bottom part of the barrel and the C terminus is completely exposed to the solvent-filled channel. The researcher found that 3,4-DHBA is bound in the active site of AsbF, surrounded by several aromatic amino acid residues.

Structurally, AbsF belongs to the AP endonuclease 2 TIM barrel protein family and its closest homologs are xylose isomerase and myoinositol catabolism protein IoII. TIM barrel enzymes vary in the location of the metal-binding sites and the type of metal involved. In the case of AsbF, a manganese ion is bound to six atoms — five in the enzyme and one in 3,4-DHBA — that might contribute to catalysis by stabilizing an intermediate ligand or product.

Analysis of AsbF site-directed mutants, together with information from the structure, support a catalytic mechanism with an enolate intermediate, specifically an E1CB (elimination unimolecular via conjugate base) mechanism. AbsF uses a base to abstract the axial proton of 3-DHS from its adjacent aliphatic carbon atom (C4).

This work indicates that AsbF is a potential new target for inhibitors that might prevent B. anthracis infection. If petrobactin were disabled, B. anthracis would be able to use only its other siderophore, the 2,3-DHBA-containing bacillibactin, for iron uptake, a process that would be highly compromised by sequestration of bacillibactin by host siderocalin.

Maria Hodges

References

  1. B, F. Pfleger et al. Structural and functional analysis of AsbF: Origin of stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis.
    Proc. Natl Acad. Sci. USA 105, 17133-17138 (2008).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health