PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

Aquaglyceroporin

PSI-SGKB [doi:10.3942/psi_sgkb/fm_2009_3]
Featured System - March 2009
Short description: The protozoan parasites that cause malaria multiply rapidly in the blood of infected individuals.

The protozoan parasites that cause malaria multiply rapidly in the blood of infected individuals. Each parasite invades a red blood cell, divides several times, and a few days later, several dozen new parasites burst out of the cell and into the bloodstream, ready to infect more cells. This destruction of red blood cells causes many of the life-threatening symptoms of malaria. As you might imagine, the destructive multiplication of these parasites requires a massive biosynthetic effort.

Multiplying Membranes

Malarial parasites must build a lot of membrane as they multiply, which requires a constant supply of fatty acids and glycerol, the building blocks of lipids. A recent study of the genome of the malaria parasite discovered an aquaglyceroporin, revealing that the parasite may get most of its glycerol directly from the host rather than building it itself using precursors from glycolysis. Glycerol is normally circulated through the bloodstream between adipose tissue, where fat is broken down, and the liver, which uses it for the construction of glucose to power the body. The malaria parasite uses a special channel protein, aquaglyceroporin, to steal this glycerol as it is being delivered.

Channeling Glycerol

Aquaglyceroporin is a passive channel, allowing glycerol and water to pass through the membrane from regions of higher concentration (outside the cell) to regions with lower concentration (inside the cell). It is a tetramer of identical subunits, arranged in a ring, with a channel running through the middle of each subunit. There is also a pore formed in the middle of the four subunits, but it is sealed by four tyrosines, which together form a watertight fireman's grip that blocks the channel.

The Specificity Filter

Aquaglyceroporin is a member of a larger class of aquaporins that have the remarkable capability of allowing water and small molecules to pass through the membrane, while restricting the passage of protons and ions. This is essential, since the normal gradient of protons and ions across the cell membrane is essential for energy management and signaling. The remarkable specificity of aquaporins is accomplished through the use of a specificity filter. This is a ring of amino acids that recognize the molecules being passed, and exclude all others. In the malaria parasite aquaglyceroporin, this filter allows both water and glycerol to pass. Other aquaporins typically are more specific, and many organisms build separate channels for transport of water and for transport of glycerol-like molecules.

Dual Specificity

The recent structure of the malaria parasite aquaglyceroporin, solved by researchers at the PSI CSMP and available in PDB entry 3c02, gives a close-up look at how its dual specificity for glycerol and water is achieved. The filter includes an arginine that forms hydrogen bonds with glycerol and water, and two aromatic amino acids that cradle the hydrophobic face of glycerol. Typical water-specific aquaporins have a narrow channel, which is too small for glycerol to pass, and the arginine is tightly hydrogen-bonded to neighboring amino acids, reducing the energetic cost of desolvation. Typical glycerol-specific channels, on the other hand, have a wider channel to accommodate the larger glycerol molecule, and the arginine forms fewer hydrogen bonds with the surrounding protein, presumably increasing the energetic cost of desolvation and reducing the flow of water through the channel. The bifunctional aquaglyceroporin combines both of these traits: it has a wider channel that allows passage of glycerol, and a tightly hydrogen-bonded arginine to assist with water passage.

The JSmol tab below displays an interactive JSmol.

LeuT with clomipramine (PDB entry 2q6h)

LeuT is composed of twelve alpha helices that cross back and forth across the cell membrane. Four helices that surround the binding site for leucine (yellow) and sodium (green) are highlighted here. Notice that two of them are kinked, wrapping around the sodium ions and forming a specific binding site for them. Imagine rocking these two helices back and forth to open alternately a path upwards and downwards. The antidepressant molecule (magenta) is bound on the side facing outside the cell. You

References

  1. Newby ZER, O'Connell J, Robles-Colmenares Y, Khademi S, Miercke LJ and Stroud RM (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nature Structural & Molecular Biology 15, 619-625.


  2. Hansen M, Kun JFJ, Schultz JE and Beitz E (2002) A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasite. Journal of Biological Chemistry 277, 4874-4882.

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health