PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
Nitrobindin
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
Phytochrome
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
Secretagogin
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
Aquaglyceroporin
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
T-Rex
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
Chronophin
May 2008

Research Themes Cell biology

Ribonuclease and Ribonuclease Inhibitor

PSI-SGKB [doi:10.3942/psi_sgkb/fm_2009_4]
Featured System - April 2009
Short description: The complex between ribonuclease and ribonuclease inhibitor is one of the tightest known intermolecular interactions, but researchers at the CESG are trying to change that.

The complex between ribonuclease and ribonuclease inhibitor is one of the tightest known intermolecular interactions, but researchers at the CESG are trying to change that. Ribonuclease is a small but destructive enzyme that is secreted by the pancreas and used to chew up RNA in our diet. Occasionally, however, it finds its way inside cells where it can wreak havoc on our cellular RNA molecules. To protect against this, our cells build a specific inhibitor protein that fights rogue ribonuclease molecules one-on-one.

A Tight Embrace

The structure solved by researchers at CESG (PDB entry 1z7x) shows how the human form of ribonuclease inhibitor works. As with the similar inhibitors from other organisms, human ribonuclease inhibitor (shown in blue) is a horseshoe-shaped protein that surrounds ribonuclease (shown in red) and blocks its active site. The strong binding is due in part to the large area of contact between the two proteins, and is augmented by strong electrostatic interactions. In mutagenesis studies, two amino acids in particular have been implicated: arginine 39 and arginine 91. In the complex, these form tight salt bridges with two glutamate amino acids in the inhibitor. These charged amino acids may also act as "electrostatic steering residues" that guide ribonuclease to its proper binding site on the inhibitor.

Evading Protections

The tight binding of ribonuclease with its inhibitor is a great advantage to the cell, since it effectively detoxifies the ribonuclease. In some cases, however, this is not the result that we want. Ribonuclease is toxic to cancer cells and is being tested as a possible therapy. Cancer cells, however, contain the inhibitor and quickly inactivate ribonuclease before it has a chance to kill the cell. Researchers have tried two approaches to solve this problem. First, they have tried using ribonucleases from other organisms, which are structurally different than our own ribonuclease and not strongly blocked by the inhibitor. However, they can also cause side effects because they are foreign to the human body.

Engineering Ribonuclease

An alternate approach is to change the human ribonuclease enough to block its interaction with the inhibitor. Based on the CESG crystal structure, researchers mutated the two "steering" arginine amino acids in ribonuclease, changing them to oppositely-charged aspartates. This resulted in an enzyme that is still active in the RNA-cleavage reaction, but which binds weakly to the inhibitor. To take a closer look at the CESG structure and this key electrostatic interaction, click on the image below.

The JSmol tab below displays an interactive JSmol.

Hda (PDB entry 3bos)

The Hda protein is a member of the AAA+ family of proteins. AAA+ proteins use ATP to control diverse functions in assembly and force generation. These proteins typically contain two different functional groups: a form-fitting active site that binds to ATP, and an 'arginine finger' that is involved in the ATP cleavage event. Typically, these proteins associate to bring the arginine finger of one subunit close to the nucleotide-binding site of another subunit. In this way, subtle motions o

References


  1. K. A. Dickson, M. C. Haigis and R. T. Raines (2005) Ribonuclease inhibitor: structure and function. Progress in Nucleic Acids Research and Molecular Biology 80, 349-374.

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health