PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

Tips for crystallizing membrane proteins

PSI-SGKB [doi:10.1038/th_psisgkb.2009.25]
Technical Highlight - June 2009
Short description: A practical guide to cloning, expressing, purifying and crystallizing membrane proteins.Nat. Protoc. 4, 619-637 (2009)

Detailed methods for obtaining pure, soluble membrane protein samples and diffraction-quality crystals are usually published with the solved structure and are often too specific to be generally useful. A general protocol for growth of membrane protein crystals has recently been published in Nature Protocols by Newby et al. 1 in collaboration with the PSI. Here, their method is distilled into ten handy hits for successful membrane protein crystallization.

Tip 1 The best predictors of crystallization success are purity and stability. As a rule of thumb, start with a protein sample that is more than 98% pure, more than 95% homogeneous and more than 95% stable when stored unconcentrated at 4 °C for 1 week.

Tip 2 Add a cleavable amino- or carboxy-terminal tag. N-terminal fusion proteins seem to increase the amount of proteins expressed, and tags in general make purification much simpler. Useful vectors for expression are the pET vectors, which are driven by T7 RNA polymerase and are inducible by isopropyl β-D-1-thiogalactopyranoside (IPTG). An alternative is the pBAD vector system, which uses arabinose for induction. Tags to consider are poly-histidine, maltose-binding protein, glutathione-S-transferase, the PelB leader sequence and the membrane-integrating sequence for translation of integral membrane constructs (Mistic).

Tip 3 Try a variety of temperatures and media for cell growth. A reduction in the growth temperature can make the difference between an improperly folded aggregate in inclusion bodies and one that is correctly folded and inserted into the membrane.

Tip 4 Although not strictly necessary, isolating the membrane faction from Escherichia coli by centrifugation immediately after harvesting and lysing the cells can reduce proteolysis by removing unwanted proteins from the insoluble fraction.

Tip 5 The concentration of detergent used for solubilization will depend in part on its critical micellar concentration (CMC), the concentration at which detergent monomers self-associate into micelles. Concentrations much higher than the CMC are usually used for solubilization to insure that there is sufficient detergent to saturate and disrupt the lipid bilayer and allow the target protein to be extracted from the membrane.

Tip 6 Different detergents can be used for purification and crystallization, and these can be easily exchanged while the sample is immobilized on an ion-exchange column. A longer-chain detergent is often used to extract the protein from the lipid membrane and a shorter-chain one for crystallization.

Tip 7 If the affinity tag proves hard to remove, this might be either because the detergent micelle is preventing the protease from accessing the cleavage site or because the detergent is inhibiting the activity of the protease. Try placing the tag at the other terminus to allow the protease access or try adding five to ten times the normal amount of the recommended protease.

Workflow for generating membrane protein crystals.

Tip 8 Dialysis is not essential for membrane protein crystallization, but it is a useful step to insure that a minimal amount of detergent is used. Detergents dialyze to equilibrium at different rates depending on their CMC, so remember to allow sufficient time for full dialysis.

Tip 9 Reduce phase separation (the tendency for detergent to separate from the aqueous solution) as much as possible, as it can inhibit crystal formation and make results hard to reproduce. One way to do this is to reduce the amount of detergent present by using a concentrator with the largest molecular weight cut-off that will still retain the protein.

Tip 10 Start your crystallization screening with polyethylene glycol (PEG) or commercial screens based on PEG as it is overwhelmingly the most successful precipitating agent for membrane proteins.

Related articles

Predicting crystallization success

A pocket guide to GPCRs

Evolving a better-expressing GPCR

Tuning membrane protein overexpression

Maria Hodges

References

  1. Z. E. R. Newby et al. A general protocol for the crystallization of membrane proteins for X-ray structural investigation.
    Nat. Protoc. 4, 619-637 (2009). doi:10.1038/nprot.2009.27

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health