PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons

Related Articles
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
CCR5 and HIV Infection
January 2015
HIV/AIDS: Pre-fusion Env Exposed
January 2015
HIV/AIDS: Slide to Enter
January 2015
Updating ModBase
January 2015
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Bacterial CDI Toxins
June 2014
Immunity: One Antibody to Rule Them All
June 2014
Virology: A Bat Influenza Hemagglutinin
March 2014
Virology: Making Sensitive Magic
March 2014
Virology: Visualizing Cyanophage Assembly
March 2014
Virology: Zeroing in on HBV Egress
March 2014
March 2014
Cas4 Nuclease and Bacterial Immunity
February 2014
Microbial Pathogenesis: A GNAT from Pseudomonas
February 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Microbiome: The Dynamics of Infection
September 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Infectious Diseases: A Pathogen Ubiquitin Ligase
May 2013
Infectious Diseases: A Shared Syringe
May 2013
Infectious Diseases: Determining the Essential Structome
May 2013
Infectious Diseases: Targeting Meningitis
May 2013
NDM-1 and Antibiotics
May 2013
Bacterial Hemophores
January 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Microbial Pathogenesis: NEAT Iron
January 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
A signal sensing switch
September 2012
Gauging needle structure
July 2012
Anthrax Stealth Siderophores
June 2012
A Pseudomonas L-serine dehydrogenase
May 2012
Pilus Assembly Protein TadZ
April 2012
Making Lipopolysaccharide
January 2012
Superbugs and Antibiotic Resistance
December 2011
A change to resistance
November 2011
An effective and cooperative dimer
November 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
Breaking down the defenses
September 2011
Moving some metal
August 2011
Capsid assembly in motion
April 2011
Know thy enemy … structurally
October 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Hemolysin BL
January 2010
Unusual cell division
October 2009
Anthrax evasion tactics
September 2009
Toxin-antitoxin VapBC-5
September 2009
Antibiotic target
August 2009
July 2009
Tackling influenza
June 2009
You look familiar: the Type VI secretion system
June 2009
Unique SARS
April 2009
Anthrax stealth molecule
March 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Antiviral evasion
October 2008
SARS connections
September 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes Infectious diseases

Anthrax evasion tactics

PSI-SGKB [doi:10.1038/fa_psisgkb.2009.38]
Featured Article - September 2009
Short description: The crystal structure of a crucial anthrax capsule enzyme will aid the search for new therapies.

Ribbon diagram of the CapD transpeptidase from Bacillus anthracis cap operon in complex with non-hydrolyzable substrate analogue. The enzyme attaches poly-γ-D-glutamic acid to peptidoglycan and forms a protective capsule on the surface of germinating bacilli. The capsule is essential for virulence during anthrax infection and can be visualized by India ink staining.

The bacterium responsible for the disease anthrax, Bacillus anthracis, is highly virulent and is often deadly. Various countries have tested and deployed this pathogen as a weapon throughout the twentieth century, and more recently it has been used for bioterrorism, with spores being sent through the US postal system.

When the bacterium exists as a spore it is incredibly difficult to destroy and it can persist for decades or even centuries. Once the spore enters the bloodstream, it germinates, replicates and spreads to every tissue in the body, thanks to its ability to evade detection by macrophages and granulocytes.

Bacillus anthracis outwits the immune system by using a thick capsule in which it encases itself in. This capsule is unusual in that it is not formed of polysaccharides, which are found on the surface of most bacterial pathogens, but is instead formed from a peptide poly-γ-D-glutamic acid or PDGA. This peptide is itself unusual in that it is a D isoform rather the L form found in most proteins.

Several genes are needed for capsule biogenesis, but the one that caught the eye of Wu et al. from the PSI MCSG and the University of Chicago was CapD, which sits on the surface of the cell. CapD interacts with PDGA and attaches this compound to the bacteria's cell wall through a transpeptidation reaction.

The sequence of CapD is similar to those of members of the γ-glutamyl transpeptidase (GGT) family, which catalyse the first step in glutathione degradation. However, CapD is specific for PDGA and does not catalyze reactions with the smaller glutathione substrate.

In their report, Wu et al. 1 describe the crystal structure of CapD with and without glutamate dipeptide, a non-hydrolysable analogue of its natural substrate, and compare it with CapD from other bacteria and other GGT family members to discover how it performs this unique reaction.

The overall structure of CapD contains two central β-sheets stacked with cluster of ten α-helices above it and eight α-helices below it. Together it forms a six-layer alpha/alpha/beta/beta/alpha/alpha sandwich, similar to the four-layer alpha/beta/beta/alpha sandwich seen in Ntn hydrolases. CapD has a large solvent-accessible groove in the middle of the molecule between the lower and upper domains. It has a remarkable, extended Y-shaped positive charge on the surface of the structure with the active site threonine 352 at the bottom of this cleft.

The differences in the ligand-bound and ligand-free forms suggest that upon substrate binding several α-helices move towards the Y-shaped groove, making the overall CapD structure more compact. Also, a loop region, Pro494 to Phe497, near the active site becomes more structured and becomes a single-turn helix upon substrate binding. Several side chains also change conformation.

In common with Ntn hydrolases, CapD undergoes self cleavage to form an acyl–enzyme intermediate; without cleavage a part of the amino acid sequence, known as the P segment, blocks the active site. In the CapD structure, a water molecule is visible within the active site, and this would be crucial for cleavage of an internal CapD peptide bond, lending support to the autocatalysis hypothesis of CapD activation.

CapD's substrate, PDGA, is larger than those of other members of the GGT family, and comparison of the CapD structure with other GGT family members suggest that they cannot accommodate PDGA because they have a longer loop that blocks access to the active site.

Surprisingly, CapD's active site is exposed and yet it cannot hydrolyse glutathione. This is likely to be because the Y-shaped cleft mediates substrate recognition. From the structure and from site-directed mutations, Wu et al. suggest that Thr372, Pro427, Gly428 and Gly429 activate Thr352 and stabilize an oxyanion hole. Modeling of the natural substrate, PDGA, within the active site suggests that Asn431, Arg432 and Arg520 position PDGA for catalysis.

Armed with this information, the search for inhibitors of CapD is underway 2 .

Related articles

Anthrax stealth molecule

YukI structure solves bacterial signalling puzzle

Tackling influenza's endonuclease

Unique SARS

Maria Hodges


  1. R. Wu et al. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD.
    J. Biol. Chem. (2009). doi:10.1074/jbc.M109.019034

  2. S. Richter et al. Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin.
    Mol. Microbiol. 71, 404-420 (2009). doi:10.1111/j.1365-2958.2008.06533.x

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health