PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Bespoke Design of Repeat Proteins
June 2015
Design and Evolution: Molecular Sleuthing Reveals Drug Selectivity
June 2015
Design and Evolution: Tunable Antibody Binders
June 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Evolution of Photoconversion
June 2015
Families in Gene Neighborhoods
June 2015
Protein Folding and Misfolding: A TRiC-ster that Follows the Rules
March 2015
Protein Folding and Misfolding: Beneficial Aggregation
March 2015
Peptidyl-carrier Proteins
October 2014
Predicting Protein Crystal Candidates
October 2014
Protein and Peptide Synthesis: Coming Full Circle
October 2014
Protein and Peptide Synthesis: Sensing Energy Balance
October 2014
Mining Protein Dynamics
May 2014
Novel Proteins and Networks: Assigning Function
May 2014
Novel Proteins and Networks: Polysaccharide Metabolism in the Human Gut
May 2014
Design and Discovery: Evolutionary Dynamics
January 2014
Design and Discovery: Identifying New Enzymes and Metabolic Pathways
January 2014
Design and Discovery: Virtual Drug Screening
January 2014
Caught in the Act
December 2013
Microbiome: Insights into Secondary Bile Acid Synthesis
September 2013
Microbiome: Structures from Lactic Acid Bacteria
September 2013
The Immune System: A Brotherhood of Immunoglobulins
June 2013
The Immune System: Super Cytokines
June 2013
Design and Discovery: A Cocktail for Proteins Without ID
February 2013
Design and Discovery: Enzyme Reprogramming
February 2013
Design and Discovery: Extreme Red Shift
February 2013
Design and Discovery: Flexible Backbone Protein Redesign
February 2013
Designer Proteins
February 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Symmetry from Asymmetry
October 2012
Serum albumin diversity
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
Targeting Enzyme Function with Structural Genomics
July 2012
Finding function for enolases
June 2012
Substrate specificity sleuths
April 2012
Disordered Proteins
February 2012
Metal mates
February 2012
Making invisible proteins visible
October 2011
Alpha/Beta Barrels
October 2010
Deducing function from small structural clues
February 2010
Extremely salty
February 2010
Membrane proteins spotted in their native habitat
January 2010
How does Dali work?
December 2009
Secretagogin
December 2009
Designing activity
September 2008

Research Themes Protein design

Deducing function from small structural clues

PSI-SGKB [doi:10.1038/th_psisgkb.2010.03]
Technical Highlight - February 2010
Short description: Find structural similarities without relying on fold classification by using the MarkUs server.

Click to view an enlarged version of the image

Making reasonable guesses about a protein's function from its structure is often, but not always, straightforward when two proteins are very similar, but what if two proteins are similar in just a small area? The MarkUs server provides a way to exploit sequence and structural relationships, whether close or remote.

Traditional structural classification of proteins on the basis of the composition and orientation of their secondary structural elements has worked well for identifying proteins with similar properties. The popular databases SCOP and CATH use these criteria to organize proteins into discreet classes or folds, meaning that one protein domain cannot be classified under two different folds.

But geometric similarities between particular regions of proteins that have different global topologies are increasingly being recorded, suggesting that remote relationships can indicate a functional link.

Barry Honig and colleagues from PSI NESG set out to discover whether structural fragments containing as few as three secondary structural elements can be used to uncover a common function. This idea has been discussed before, but this is the first time it has been used to suggest a function and the first time software based on this approach has been available.

The software they developed, the MarkUs server, integrates several sequence- and structure-based analysis methods, such as DALI, Psi-BLAST and DelPhi, to characterize the biochemical and biophysical properties of a protein structure and to suggest structural neighbors. In particular, DelPhi is important because it calculates electrostatic potential, which is useful for inferring membrane and DNA-binding regions or the enzymatic activity. The ability to search for structural relationships without relying on classification significantly increases the number of functional predictions that can be made. MarkUs then allows the analysis of these predictions using various annotation databases such as GO, UniProt, LS-SNP and ChEBI.

Such 'new generation' integrated computational and data-retrieval tools should allow a researcher to explore sequence, structural and functional databases in such a way as to develop and validate hypthotheses.

Related article

How does Dali work?

Maria Hodges

References

  1. D. Petrey, M. Fischer & B. Honig Structural relationships among proteins with different topologies and their implications for function annotation strategies.
    Proc. Natl Acad. Sci. USA 106, 17377-17382 (2009). doi:10.1073/pnas.0907971106

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health