PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
Nitrobindin
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
Phytochrome
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
Secretagogin
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
Aquaglyceroporin
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
T-Rex
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
Chronophin
May 2008

Research Themes Cell biology

Toxin-antitoxin VapBC-5

PSI-SGKB [doi:10.3942/psi_sgkb/fm_2009_9]
Featured System - September 2009
Short description: Living cells are full of surprises and mysteries.

Living cells are full of surprises and mysteries. Looking into the genomes of bacterial cells, researchers have discovered an odd paradox: many bacteria make specific toxins that attack their own molecular processes, and at the same time, they make antitoxins that block these toxins. Both the toxin and the antitoxin are typically encoded in a single operon, so they are expressed together, and the antitoxin often additionally acts as a repressor of the operon. Bacterial cells are filled with these toxin-antitoxin pairs. For instance, a typical Escherichia coli cell may have half a dozen different sets and tuberculosis bacteria have at least 57 on their chromosome. So, this is no evolutionary mistake--they are there for a reason. How does an inhibited toxin benefit the life of a bacterial cell?

Addictive Antitoxins

The first toxin-antitoxin pair was discovered in Escherichia coli. The toxin-antitoxin operon was found on a large plasmid that normally occurs in low copy numbers, and its function is to ensure the continued propagation of the plasmid. The trick to this is in the antitoxin. The antitoxins are typically less stable than the toxins and are degraded by cellular proteases more quickly than the toxins. When a cell divides, each daughter ideally gets a copy of the plasmid along with a bunch of toxin-antitoxin complexes. If, however, one daughter doesn't get a copy of the plasmid, the leftover antitoxins are eventually degraded, releasing active toxin that destroys the cell. This drastic approach to quality control has been termed "plasmid addiction."

Slow and Steady

Toxin-antitoxin pairs are also widely found in bacterial chromosomes. Their function is not as well defined, but they are thought to be a mechanism to control growth in hard times. When cells are stressed, for instance by starvation or antibiotics, specific proteases are activated that destroy the antitoxins. The toxins then do their job and slow protein synthesis, ultimately arresting the growth of the cell until the trouble has passed. In these cases, the toxins are not deadly to the cell. Instead, they just put the brakes on growth.

Structure and Function

Researchers at ISFI have revealed the first structure of a toxin-antitoxin pair from the bacterium that causes tuberculosis, shown here from PDB entry 3dbo. The toxin and the antitoxin are both small proteins that form an intimate association in the complex. Based on the structure, PSI researchers have proposed that the toxin, shown here in pink, is a ribonuclease that uses magnesium ions to cleave RNA. The presumed active site is in a deep cleft on the surface. The antitoxin, shown here in blue, wraps nearly all the way around the toxin, blocking the active site. A portion of the antitoxin, which associates with DNA when it acts as a repressor, is not seen in this structure. The critical instability of the antitoxin is easily explained by the structure, since the antitoxin adopts an extended structure that would not be stable in the absence of the toxin.

The JSmol tab below displays an interactive JSmol.

Pseudouridine Synthase (PDB entry 2nr0)

PDB entry 2nr0 shows two conformations of the guanine base at position 39. One position is stacked normally in the stem, and the other conformation has the base flipped into the active site of the protein. Flip between these two conformations using the buttons above. Note that several of the bases adjacent to position 39 are disordered in the flipped position, and thus are not seen in the crystal structure. The active site aspartate is also shown with thinner bonds. Notice that it is positioned

References

  1. Miallau, L., Faller, M., Chiang, J., Arbing, M., Guo, F., Cascio, D. and Eisenberg, D. (2009) Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. J. Biol. Chem. 284, 276-283.

  2. Makarova, K. S., Wolf, Y. I. and Koonin, E. V. (2009) Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology Direct 4:19.

  3. Magnuson, R. D. (2007) Hypothetical functions of toxin-antitoxin systems. J. Bacteriol. 189, 6089-6092.

  4. Buts, L., Lah, J., Dao-Thi, M. H., Wyns, L. and Loris, R. (2005) Toxin-antitoxin modules as bacterial stress managers. Trends Biochem. Sci. 30, 672-679.

  5. Gerdes, K., Christensen, S. K. and Lobner-Olesen (2005) Prokaryotic toxin-antitoxin stress response loci. Nature Rev. Microbio. 3, 371-382.

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health