PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

COX inhibition: Naproxen by proxy

SBKB [doi:10.1038/sbkb.2010.48]
Featured Article - November 2010
Short description: Structural basis of COX inhibition suggests that adverse effects of NSAIDs will not be easily avoided.

Naproxen is one of the original non-steroidal anti-inflammatory drugs (NSAIDs) that target the cyclooxygenase (COX) enzymes, yet the molecular basis of its interaction with COX enzymes has not been well established. Through a structure-activity-guided approach, Lawrence Marnett and colleagues uncover interactions that dictate naproxen binding to COX-2 and distinguish it from other NSAIDs that bind the COX enzymes.

There are at least four structural classes of molecules that characterize NSAIDs. Naproxen is a relatively simple molecule, containing three functional groups: an arylpropionic acid (carboxylate), a p-methoxy group and an α–methyl group on a naphthyl scaffold. As a drug, naproxen inhibits both COX-1 and COX-2 with comparable IC50s and exhibits gastrointestinal side effects, but reduced cardiovascular side effects relative to other selective as well as non-selective COX inhibitors.

To probe the interaction between naproxen and the COX enzymes, Marnett and colleagues mutated residues R120 and Y355 of murine COX-2 (mCOX-2), as these residues have been identified to mediate the canonical interaction of the arylcarboxylic acid family of NSAIDs. These mutations suggest that the carboxylate group of naproxen binds in the canonical orientation, coordinated to these two residues. To verify this and to identify other naproxen interactions with mCOX-2, the authors solved the co-crystal structure at 1.7 Å resolution.

This high resolution structure enabled visualization of solvent, ion and detergent molecules not observed in lower resolution structures of the COX enzymes, as well as subtle differences from existing co-crystal structures with COX-2. The naproxen-mCOX-2 complex also revealed a single orientation of naproxen within the COX-2 active site. Beyond the hydrogen-bonding interactions of the naproxen carboxylate group to R120 and Y355 predicted from the mutagenesis data, all other interactions are van der Waals contacts. W387 is an important residue at the top of the mCOX-2 active site. That naproxen was unable to inhibit a W387F mutant, whereas other NSAIDs like diclofenac and indomethacin could inhibit enzymatic activity suggests that an interaction between naproxen and this residue is specific to this NSAID.

Turning to mutagenesis of the naproxen molecule, the authors substituted the α–methyl group with hydrogen, ethyl or dimethyl substituents and found a loss of enzymatic potency with each of them, indicating that an (S)-methyl group at this position is critical. The co-structure shows that this group inserts into a small hydrophobic cleft below V349, which seems to anchor naproxen within the active site and reinforce the canonical binding orientation. A similar structure-activity relationship analysis of the naproxen p-methoxy group suggested the importance of this constituent at the top of the enzyme active site channel. Interestingly, p-ethyl and p-methylthio substitutions at this position still allowed inhibition of mCOX-2, but these compounds could not inhibit ovine COX-1. Also surprising was that both of these analogs inhibited the W387F COX-2 mutant as effectively as they inhibited the wild-type enzyme.

To follow up on these observations of COX-2 selectivity, the authors solved a second co-structure, this time between the p-methylthio naproxen derivative and mCOX-2. Compared to the naproxen co-structure, there was a shift of the carboxylate tails of the compounds and a new interaction between the naphthyl backbone of the p-methylthio naproxen, while many of the other interactions remain the same in the two co-structures.

These results define the contribution of the COX protein and naproxen atoms to the affinity and suggest that there is little tolerance for mutation in either component. This could tend to complicate any attempts to modify naproxen to eliminate the unwanted gastrointestinal side effects of the drug.

Mirella Bucci

References

  1. K. C. Duggan, M. J. Walters, J. Musee, J. M. Harp, J. R. Kiefer et al. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug, naproxen.
    J. Biol. Chem (1 September 2010). doi:10.1074/jbc.M110.162982

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health