PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

Subtly different

SBKB [doi:10.1038/sbkb.2011.06]
Featured Article - March 2011
Short description: The crystal structure of the D3 dopamine receptor reveals how to selectively target D2-like receptors.

The structure of D3R suggests strategies for designing therapeutics to distinguish between D2-like dopamine receptors.

Dopamine is a crucial neurotransmitter that affects many functions in the brain, acting through the five dopamine receptor subtypes. These G protein–coupled receptors (GPCRs) are further divided into subfamilies on the basis of whether they activate or deactivate adenylyl cyclase (the D1-like or D2-like receptors, respectively). Within the subfamilies, the receptors are very similar, as demonstrated by the high degree of identity between the D2-like receptors D2R and D3R. This similarity has made it difficult to selectively target D2R or D3R, which is desirable for the treatment of schizophrenia or drug abuse.

To address this challenge, Stevens and colleagues (PSI ATCG3D) solved the X-ray crystal structure of D3R in complex with the D2R and D3R inhibitor eticlopride. The structure shows that D3R has a typical GPCR seven-transmembrane domain core with multiple extracellular (ECL) and cytoplasmic (ICL) loops. Two slightly different conformational states of the ICL2 loop were seen, suggesting that this loop may modulate the activity of the receptor. Overall, D3R is structurally very similar to the β2-adrenergic receptor (β2AR), although several shifts can be seen in the positions of the helices that form the core of the receptor. Interestingly, the ionic lock—a stabilizing salt bridge interaction in GPCRs that was thought to play a major factor in stabilizing the receptors in the inactive conformation—can be seen in the D3R structure, the first time this has been shown for a GPCR structure.

Eticlopride bound D3R in a similar location as did the ligand-binding pocket in the β2AR structure, interacting with 18 different residues. Of those residues, 17 are conserved in the D2R interaction with eticlopride, in agreement with the similar affinity of D2R and D3R for eticlopride and underscoring the difficulty in targeting the two receptors individually. Using the structure of D3R, the authors generated a homology model of D2R, which revealed some subtle, but important, differences between the two receptors. Notably, differences can be seen in the extracellular half of helix I and the extracellular electrostatic surfaces, both of which could affect ligand binding. Molecular docking of R-22, a D3R-selective agonist, showed that, in addition to using the same binding pocket as eticlopride, R-22 also utilizes a second binding pocket that involves residues not conserved between the two receptors. Molecular dynamics simulations of D2R confirmed that this second binding pocket has an altered packing relative to D3R, allowing for discrimination between ligands.

Although the differences between D2R and D3R may seem minor, biochemists will no doubt be able to exploit them. The structure of D3R will be foundational to the efforts to develop inhibitors that can distinguish between these two D2-like receptors.

Steve Mason

References

  1. E.Y.T. Chien et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist.
    Science 330, 1091-1095 (2010). doi:10.1126/science.1197410

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health