PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
Nitrobindin
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
Phytochrome
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
Secretagogin
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
Aquaglyceroporin
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
T-Rex
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
Chronophin
May 2008

Research Themes Cell biology

Ribose production on demand

SBKB [doi:10.1038/sbkb.2011.36]
Featured Article - September 2011
Short description: A previously unidentified enzymatic activity provides the driving force that leads to NADPH-independent ribose production.

Structure of the Shb17–SBP complex, in which the SBP (stick representation, light blue carbon atoms) is shown bound within a cavity in the semitransparent surface of Shb17. Selected residues of Shb17 involved in ligand binding are also shown by a stick representation (green carbon atoms). Image courtesy of A. Yakunin.

Eukaryotic cells consume glucose through glycolysis and the oxidative pentose phosphate pathway, which produces NADPH and the essential nucleotide component ribose-5-phosphate. Glycolytic intermediates can also be converted into ribose by enzymes in the nonoxidative arm of the pathway, the regulation of which is poorly understood. Clasquin et al., with help from the PSI MCSG, now report the characterization of a budding yeast enzyme, Shb17, that links the pentose phosphate pathway and glycolysis in a sequence of reactions called riboneogenesis by catalyzing a committed (that is, strongly thermodynamically driven) dephosphorylation step. Through this process, the riboneogenesis pathway converts glycolytic intermediates into ribose-5-phosphate without the production of NADPH.

By carrying out a metabolomics screen of yeast deletion mutations of genes of unknown function, the authors found that deletion of SHB17 led to the accumulation and the depletion of certain metabolites. Biochemical assays were then used to determine the endogenous substrates, sedoheptulose-1,7-bisphosphate (SBP) and octulose-1,8-bisphosphate (OBP), which were converted into sedoheptulose-7-phosphate (S7P) and octulose-8-phosphate (O8P), respectively. Shb17 had previously been shown to have phosphatase activity against the structurally similar metabolite fructose-1,6-bisphosphate (FBP) in vitro, but FBP does not accumulate in the SHB17 deletion strain, and kinetic studies confirmed that Shb17 has a preference for SBP.

Further insight into this preference for SBP came from structural analysis of the Shb17–SBP complex (PDB 3OI7), which revealed strong similarities to the recently determined structure of Shb17 in complex with FBP. However, compared with the Shb17–FBP structure, Shb17 makes additional hydrogen bond interactions with SBP, and SBP binds the active site in a more favorable closed furan conformation—these features may together be responsible for the higher affinity.

Isotope labeling studies allowed the quantification of carbon-to-ribose flux into the riboneogenesis pathway versus the other two routes of ribose production. Flux through Shb17 increases when ribose demand is high relative to the demand for NADPH. In metabolically synchronized yeast cells, Shb17 expression levels are correlated with expression levels of the ribosomal proteins, suggesting that periodic Shb17 expression coincides with the peak demand for ribose phosphate that occurs during ribosome synthesis. Together, these findings suggest that riboneogenesis provides a pathway for ribose production that is uncoupled from formation of NADPH, allowing the cell to adjust the flux of carbon to ribose in response to changing conditions.

Arianne Heinrichs

References

  1. M. F. Clasquin et al. Riboneogenesis in yeast.
    Cell 145, 969-980 (2011). doi:10.1016/j.cell.2011.05.022

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health