PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

Anchoring's the way

SBKB [doi:10.1038/sbkb.2011.62]
Featured Article - February 2012
Short description: New insights into the regulation of AQP0 reveal mechanisms involved in cataract development.

The C-terminal domain of AQP0 has an AKAP2 binding site (green) and a helical segment (yellow) where PKA-mediated phosphorylation occurs. (PDB: 2B6P) figure courtesy of Tamir Gonen.

While most tissues receive nutrients via blood vessels, the ocular lens, which must be transparent to properly focus light, lacks a conventional vascular system. Instead, the lens has an internal circulation system based on membrane channel and transporter proteins. These proteins maintain lens transparency by enabling a constant flow of water, ions, second messengers, and metabolites. Cataract, a clouding of the ocular lens, is the leading cause of blindness worldwide.

Aquaporins are transmembrane proteins that regulate the flow of water across biological membranes. One of the primary proteins involved in maintaining the flow of water throughout the lens is the water channel aquaporin-0 (AQP0). The opening and closing of AQP0 are regulated by several mechanisms. For example, binding of Ca2+/calmodulin closes the pore, whereas phosphorylation of AQP0 in the calmodulin-binding region opens the channel. However, the details involved in this process had not been previously identified.

Now, Gold and colleagues (PSI TEMIMPS), have identified the players involved in opening AQP0 by phosphorylation. The authors noted that the sequence surrounding the phosphorylation site in AQP0 corresponds to a protein kinase A (PKA) recognition motif. Because PKA is often brought into contact with its substrates by A-kinase anchoring proteins (AKAPs), the authors proceeded to identify potential AKAPs in the lens. Immunoblotting of lens homogenates and fixed lenses revealed that AKAP2 interacts with PKA and localizes to the lens cortex. AQP0 was also found to associate with AKAP2 via the channel's cytoplasmic tail. The authors verified by mass spectrometry that PKA could phosphorylate Ser235 in AQP0. Ser235 is located in the calmodulin-binding domain of AQP0, and phosphorylation at this site prevents binding between AQP0 and calmodulin. Therefore, the authors developed a model by which AKAP2 brings PKA and AQP0 into close proximity, enabling phosphorylation and subsequent activation of AQP0 by PKA and regulating water permeability in the lens.

To verify the relevance of their findings, the authors disrupted the interaction between PKA and AQP0 in the lens in vivo. Displacement of PKA led to cataract development in the lens and increased lens opacity. This work represents the first direct demonstration of the function of AKAP2 and elucidates one of the mechanisms that lead to cataract development.

Jennifer Cable

References

  1. M.G. Gold et al. AKAP2 anchors PKA with aquaporin-0 to support ocular lens transparency.
    EMBO Mol Med. 4, 1-12 (2011). doi:10.1002/emmm.201100184

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health