PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Bespoke Design of Repeat Proteins
June 2015
Design and Evolution: Molecular Sleuthing Reveals Drug Selectivity
June 2015
Design and Evolution: Tunable Antibody Binders
June 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Evolution of Photoconversion
June 2015
Families in Gene Neighborhoods
June 2015
Protein Folding and Misfolding: A TRiC-ster that Follows the Rules
March 2015
Protein Folding and Misfolding: Beneficial Aggregation
March 2015
Peptidyl-carrier Proteins
October 2014
Predicting Protein Crystal Candidates
October 2014
Protein and Peptide Synthesis: Coming Full Circle
October 2014
Protein and Peptide Synthesis: Sensing Energy Balance
October 2014
Mining Protein Dynamics
May 2014
Novel Proteins and Networks: Assigning Function
May 2014
Novel Proteins and Networks: Polysaccharide Metabolism in the Human Gut
May 2014
Design and Discovery: Evolutionary Dynamics
January 2014
Design and Discovery: Identifying New Enzymes and Metabolic Pathways
January 2014
Design and Discovery: Virtual Drug Screening
January 2014
Caught in the Act
December 2013
Microbiome: Insights into Secondary Bile Acid Synthesis
September 2013
Microbiome: Structures from Lactic Acid Bacteria
September 2013
The Immune System: A Brotherhood of Immunoglobulins
June 2013
The Immune System: Super Cytokines
June 2013
Design and Discovery: A Cocktail for Proteins Without ID
February 2013
Design and Discovery: Enzyme Reprogramming
February 2013
Design and Discovery: Extreme Red Shift
February 2013
Design and Discovery: Flexible Backbone Protein Redesign
February 2013
Designer Proteins
February 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Symmetry from Asymmetry
October 2012
Serum albumin diversity
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
Targeting Enzyme Function with Structural Genomics
July 2012
Finding function for enolases
June 2012
Substrate specificity sleuths
April 2012
Disordered Proteins
February 2012
Metal mates
February 2012
Making invisible proteins visible
October 2011
Alpha/Beta Barrels
October 2010
Deducing function from small structural clues
February 2010
Extremely salty
February 2010
Membrane proteins spotted in their native habitat
January 2010
How does Dali work?
December 2009
Secretagogin
December 2009
Designing activity
September 2008

Research Themes Protein design

Finding function for enolases

SBKB [doi:10.1038/sbkb.2011.81]
Featured Article - June 2012
Short description: Using homology models to direct biochemical and structural studies allows researchers to characterize a broad set of dipeptide epimerase specificities in the enolase superfamily.

Differences in the representative structures of dipeptide epimerases, six of which are superposed here, give rise to divergent substrate specificities. Reprinted with permission from PNAS. 1

The recent surge in genomic sequencing has swollen protein databases with sequences that lack functional annotation. Large enzyme superfamilies such as the enolases are particularly challenging to annotate because they can include members that encode widely disparate functions. Babbit, Almo, Gerlt, Jacobsen and colleagues of the Enzyme Function Initiative (EFI) tackled enolase substrate specificity using a computational approach to target a representative subset of enzymes for in vitro biochemical and structural studies.

Within the enolase superfamily, over 700 proteins have two Lys acid/base catalysts and an Asp-x-Asp motif at the end of three β strands in the barrel domain that act to epimerize dipeptides. The authors generated homology models and docking simulations spanning the space of all possible dipeptides for 66 of the epimerases available at the time that computational predictions were undertaken. Two well-characterized L-Ala-D/L-Glu epimerases (AEEs) from Escherichia coli and Bacillus subtilus that are thought to process peptidoglycans anchored the analysis.

In addition to confirming L-Ala-L-Glu specificity of the known AEEs, modeling predicted a new phylogenetically distinct group of AEEs as well as novel dipeptide specificity classes. These included a small set of epimerases specific to positively charged dipeptides and a number of groups specific for hydrophobic dipeptides.

To test the predictions, 17 modeled proteins were purified and subjected to biochemical analysis against a panel of dipeptides—a mass spectrometry assay that uses incorporated deuterium to detect epimerization—and kinetic experiments. Six epimerases were also used to produce 18 crystal structures, including five bound to identified substrates.

The results largely validated computational predictions, including the identification of a new class of AEEs with somewhat relaxed specificity at the N-terminal position, represented by an epimerase from Bacteroides thetaiotamicron; the surprising existence of epimerases such as from Methylococcus capsulatus that are specific for positively charged dipeptides; and the classification of hydrophobic dipeptide groups that include most of the plant epimerases. The combined use of computational prediction and targeted experimental validation should allow large-scale functional assessment of enzyme superfamilies.

Tal Nawy

References

  1. T. Lukk et al. Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily.
    Proc Natl Acad Sci USA 109, 4122-4127 (2012). doi:10.1073/pnas.1112081109

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health