PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
CCR5 and HIV Infection
January 2015
HIV/AIDS: Pre-fusion Env Exposed
January 2015
HIV/AIDS: Slide to Enter
January 2015
Updating ModBase
January 2015
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Bacterial CDI Toxins
June 2014
Immunity: One Antibody to Rule Them All
June 2014
Virology: A Bat Influenza Hemagglutinin
March 2014
Virology: Making Sensitive Magic
March 2014
Virology: Visualizing Cyanophage Assembly
March 2014
Virology: Zeroing in on HBV Egress
March 2014
Viroporins
March 2014
Cas4 Nuclease and Bacterial Immunity
February 2014
Microbial Pathogenesis: A GNAT from Pseudomonas
February 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Microbiome: The Dynamics of Infection
September 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Infectious Diseases: A Pathogen Ubiquitin Ligase
May 2013
Infectious Diseases: A Shared Syringe
May 2013
Infectious Diseases: Determining the Essential Structome
May 2013
Infectious Diseases: Targeting Meningitis
May 2013
NDM-1 and Antibiotics
May 2013
Bacterial Hemophores
January 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Microbial Pathogenesis: NEAT Iron
January 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
A signal sensing switch
September 2012
Gauging needle structure
July 2012
Anthrax Stealth Siderophores
June 2012
A Pseudomonas L-serine dehydrogenase
May 2012
Pilus Assembly Protein TadZ
April 2012
Making Lipopolysaccharide
January 2012
Superbugs and Antibiotic Resistance
December 2011
A change to resistance
November 2011
An effective and cooperative dimer
November 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
Breaking down the defenses
September 2011
Moving some metal
August 2011
Capsid assembly in motion
April 2011
Know thy enemy … structurally
October 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Hemolysin BL
January 2010
Unusual cell division
October 2009
Anthrax evasion tactics
September 2009
Toxin-antitoxin VapBC-5
September 2009
Antibiotic target
August 2009
Lysostaphin
July 2009
Tackling influenza
June 2009
You look familiar: the Type VI secretion system
June 2009
Unique SARS
April 2009
Anthrax stealth molecule
March 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Antiviral evasion
October 2008
SARS connections
September 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes Infectious diseases

Gauging needle structure

SBKB [doi:10.1038/sbkb.2011.86]
Featured Article - July 2012
Short description: Solid-state NMR and computer modeling yield a highly resolved atomic model of the type III secretion system needle.

Top view of a needle showing 11 PrgI subunits arranged in a right-handed helix with outward-facing N-termini (N-ter).
Figure courtesy of Adam Lange.

Some of the most pernicious Gram-negative bacteria use a type III secretion system (T3SS) to inject effectors into host cells. These include the bacteria that cause bubonic plague and typhoid fever, and Salmonella typhimurium, which causes food poisoning. Secretion requires the needle of the T3SS, a tubular protein filament that in S. typhimurium is composed of multiple copies of PrgI protomers.

Previous studies used X-ray crystallography and cryo-electron microscopy to study the needle assembly, but could not produce high-resolution structures. As the needle is insoluble, it is not amenable to solution NMR methods. To obtain an atomic resolution model of the T3SS needle, Lange, Becker, Baker, Kolbe and colleagues reconstituted recombinant wild-type needles and applied solid-state NMR.

The groups purified 13C -labeled S. typhimurium PrgI protomers and polymerized them in vitro. Solid-state NMR showed that the PrgI structure consists of two α-helices separated by a loop. It also revealed an extended rigid N-terminal domain and a kink in helix α1 that was omitted in previous X-ray and solution NMR studies. Sparse isotopic 13C labeling yielded a large number of cross-peaks in the solid-state NMR spectra, corresponding to 247 long-range 13C–13C and 15N–13C restraints. These restraints identified the intrasubunit hairpin, intersubunit lateral interfaces resulting from α1–α1 and α2–α2 helix–helix packing, and an axial translation of ∼24 Å between neighboring subunits.

The groups modeled the assembly by customizing a homo-oligomeric fold-and-dock protocol in the energy-guided optimization software Rosetta. A right-handed helical assembly with 11 subunits per two turns was most consistent with the restraints and microscopy data. The final model (PDB 2LPZ) is a helical assembly with a ∼80-Å outer diameter tube and a ∼25-Å lumen lined with conserved residues; each subunit i interfaces with i ± 5 and i ± 6 laterally, and with i ± 11 axially.

In contrast to previous models, the PrgI N-termini face outward in their needle structure. The researchers confirmed this orientation by immunogold staining of His-tagged PrgI, and used in vivo invasion assays with prgI mutants to validate the function of key residues in the PrgI termini predicted to participate in lateral and axial interfaces.

The combined NMR and modeling approach should help refine interfaces in the structure of other homo-oligomeric protein assemblies.

Tal Nawy

References

  1. A. Loquet et al. Atomic model of the type III secretion system needle.
    Nature. (20 May 2012). doi:10.1038/nature11079

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health