PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Bespoke Design of Repeat Proteins
June 2015
Design and Evolution: Molecular Sleuthing Reveals Drug Selectivity
June 2015
Design and Evolution: Tunable Antibody Binders
June 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Evolution of Photoconversion
June 2015
Families in Gene Neighborhoods
June 2015
Protein Folding and Misfolding: A TRiC-ster that Follows the Rules
March 2015
Protein Folding and Misfolding: Beneficial Aggregation
March 2015
Peptidyl-carrier Proteins
October 2014
Predicting Protein Crystal Candidates
October 2014
Protein and Peptide Synthesis: Coming Full Circle
October 2014
Protein and Peptide Synthesis: Sensing Energy Balance
October 2014
Mining Protein Dynamics
May 2014
Novel Proteins and Networks: Assigning Function
May 2014
Novel Proteins and Networks: Polysaccharide Metabolism in the Human Gut
May 2014
Design and Discovery: Evolutionary Dynamics
January 2014
Design and Discovery: Identifying New Enzymes and Metabolic Pathways
January 2014
Design and Discovery: Virtual Drug Screening
January 2014
Caught in the Act
December 2013
Microbiome: Insights into Secondary Bile Acid Synthesis
September 2013
Microbiome: Structures from Lactic Acid Bacteria
September 2013
The Immune System: A Brotherhood of Immunoglobulins
June 2013
The Immune System: Super Cytokines
June 2013
Design and Discovery: A Cocktail for Proteins Without ID
February 2013
Design and Discovery: Enzyme Reprogramming
February 2013
Design and Discovery: Extreme Red Shift
February 2013
Design and Discovery: Flexible Backbone Protein Redesign
February 2013
Designer Proteins
February 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Symmetry from Asymmetry
October 2012
Serum albumin diversity
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
Targeting Enzyme Function with Structural Genomics
July 2012
Finding function for enolases
June 2012
Substrate specificity sleuths
April 2012
Disordered Proteins
February 2012
Metal mates
February 2012
Making invisible proteins visible
October 2011
Alpha/Beta Barrels
October 2010
Deducing function from small structural clues
February 2010
Extremely salty
February 2010
Membrane proteins spotted in their native habitat
January 2010
How does Dali work?
December 2009
Secretagogin
December 2009
Designing activity
September 2008

Research Themes Protein design

Predictive protein origami

SBKB [doi:10.1038/sbkb.2011.88]
Technical Highlight - July 2012
Short description: Membrane protein 3D folds are accurately predicted from evolutionary constraints derived from genomic sequencing.

Evolutionary couplings as calculated by EVfold.
Figure courtesy of Thomas Hopf.

Protein sequence families embody an evolutionary record of mutations that sustain protein structure and function over the course of species diversification. Sequence variation and functional integrity can be dually achieved via correlated mutations, whereby sets of amino acids engaged in long-range contacts mutate simultaneously, with retention of favorable interactions in a functional mutant. In a study both predictive and practical, Marks and colleagues hypothesize that nature imposes constraints on mutation sets to preserve contacts deemed critical to protein structure and function. The authors examine the possibility of identifying meaningful evolutionary constraints from genomic sequencing data for use in predicting three-dimensional (3D) structures of transmembrane proteins, which represent over 25% of all human proteins and over half of all drug targets.

The predictive algorithm, EVfold_membrane, uses a maximum entropy approach to derive evolutionary constraints from correlated mutations identified through multiple sequence alignments. The constraint set is supplemented with predicted secondary structural elements and filtered to remove contacts that conflict with transmembrane topology. Distance constraints are imposed on extended polypeptide chains, which undergo ab initio folding via distance geometry (DG) and simulated annealing. Because DG allows direct translation of constraints to 3D coordinates, the protocol trumps de novo protein folding strategies limited by massive conformational search space.

Performance was benchmarked by computing 3D folds for 25 established transmembrane proteins from diverse families. Comparison of coordinates from predicted versus crystal structures revealed unparalleled levels of agreement (template modeling scores > 0.5 in 22 cases). The method wielded strong predictive power for functionally relevant motifs; residues with multiple pair constraints were localized to substrate binding pockets, oligomeric interfaces, and/or involved in conformational changes. When applied to sequence families representing transmembrane proteins of unknown structure (with up to 14 helices), several predicted structures shared 3D folds with sequence-distant yet functionally related proteins. Challenges remain, including distinguishing intra- from intermonomer contacts, as well as couplings arising from distinct conformations. Its applications include complementing experimental structure determination methods, guiding rational drug design and functional mutation experiments, and engineering proteins. Predicting protein structure from evolutionary constraints encrypted in sequence families promises to harness the potential of the genomic age.

Barbara Potts

References

  1. T.A. Hopf et al. Three-dimensional structures of membrane proteins from genomic sequencing.
    Cell. (9 May 2012). doi:10.1016/j.cell.2012.04.012

  2. D.S. Marks et al. Protein 3D structure computed from evolutionary sequence variation.
    PLoS ONE. 6, e28766 (2011). doi:10.1371/journal.pone.0028766

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health