PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Cas4 Nuclease and Bacterial Immunity
February 2014
Protein-Nucleic Acid Interaction: Inhibition Through Allostery
July 2013
Stabilizing DNA Single Strands
July 2013
AlkB Homologs
August 2012
Methyl maintenance
May 2012
Follow the RNA leader
December 2011
RNA Chaperone NMB1681
July 2011
Seeing HetR
July 2011
Structure from sequence
July 2011
Added benefits
April 2011
Nitrile Reductase QueF
March 2011
Inhibiting factor
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
tRNA Isopentenyltransferase MiaA
August 2010
Mre11 Nuclease
May 2010
Seek and destroy 8-oxoguanine
May 2010
Antibiotics and Ribosome Function
March 2010
Pseudouridine Synthase TruA
November 2009
Get3 into the groove
October 2009
Guanine Nucleotide Exchange Factor Vav1 and Rho GTPase Rac1
October 2009
Proofreading RNA
July 2009
Hda and DNA Replication
June 2009
The elusive helicase
April 2009
Poly(A) RNA recognition
January 2009
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
RNase T
July 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes DNA and RNA

Nitrile Reductase QueF

SBKB [doi:10.3942/psi_sgkb/fm_2011_3]
Featured System - March 2011
Short description: Nature uses exotic chemistry to build its diverse collection of molecules.

Nature uses exotic chemistry to build its diverse collection of molecules. Some of the oddest reactions are performed on transfer RNA. Most often, these changes are made by enzymes that capture a tRNA and then make modifications, adding additional groups or swapping out a few atoms for others with different properties. These chemical changes modify the interactions of tRNA with mRNA or ribosomes, making small adjustments that refine its function as the translator of genetic information.

Unique Reduction

The bacterial nitrile reductase QueF is a key enzyme in the biosynthesis of queuosine, a modified base used in the wobble anticodon position in several types of tRNA. QueF is unusual in two respects. First, it makes its modification on a free base, instead of the normal process of modifying a nucleotide that has already been built into a tRNA chain. The new group, after a few additional modifications, is then swapped onto the tRNA anticodon by another enzyme. Second, QueF performs a unique reaction, never before observed in nature, reducing a nitrile group to a primary amine.

Tools of Reduction

QueF uses several chemical tricks to perform its exotic reaction. NADPH, a carrier of hydride groups, provides the reductive power. Two molecules of NADPH are needed to perform the full reaction, which poses a potential problem: the reaction must be performed in two steps. Unfortunately, the intermediate form, created after the first NADPH has performed its half of the reduction, is reactive and would easily be destroyed by water. The enzyme solves this problem by using a cysteine amino acid to hold the intermediate, forming a covalent bond with it and protecting it from the surrounding water.

QueF Revealed

The structure of QueF, recently solved by PSI researchers at MCSG and available in PDB entry 3bp1, reveals much of this process, and leaves some mysteries. Two subunits of the enzyme form an elongated groove. In the crystal structure, two molecules of guanine were found at either end of this groove (shown here in green), and a pyrophosphate bound right in the center (red and yellow). The little loop of protein that carries the active site cysteine is disordered and cannot be seen in the structure. Presumably it folds over the top of the groove to perform the reaction when NADPH binds.

QueF in Action

To gain more insight into the reaction, PSI researchers performed computational simulations to explore the binding of NADPH and the nucleotide base that is modified. In the final model, NADPH is stretched out in the groove, and displaces one of the guanine bases observed in the crystal structure. To take a closer look at this model, the JSmol tab below displays an interactive JSmol image.

The JSmol tab below displays an interactive JSmol

A2A Adenine Receptor (PDB entries 3qak and 3eml)

Binding of adenosine shifts the structure of the receptor to the active form. Use the buttons to flip between the active agonist-bound form and the inactive antagonist-bound form and see the motion of the receptor. There is also a button to show just the adenosine portion of the agonist ligand. In each structure, the adenine portion of the molecule is colored green, and the ribose portion is colored magenta.

References

  1. Kim, Y. et al. High resolution structure of the nitrile reductase QueF combined with molecular simulations provide insight into enzyme mechanism. J. Mol. Biol. 404, 127-137 (2010).

  2. Iwata-Reuyl, D. An embarrassment of riches: the enzymology of RNA modification. Curr. Op. Chem. Biol. 12, 126-133 (2008).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health