PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

A2A Adenosine Receptor

SBKB [doi:10.3942/psi_sgkb/fm_2011_5]
Featured System - May 2011
Short description: With proteins, small motions often have large effects.

With proteins, small motions often have large effects. A new structure of the A2A adenosine receptor reveals these motions for an important class of proteins: the G protein-coupled receptors. GPCRs transmit messages across cell membranes, capturing signaling molecules like adrenaline and dopamine, shifting shape, and launching a cascade of messages inside the cell. The atomic details of this signaling has been largely a mystery, since previous structures show the receptor in an inactive state. The new structure fills out the story, and captures the receptor in the activated state, after it has bound to its signaling ligand.

Signaling with Nucleosides

Adenosine receptors are found on cells throughout the body, where they play many different roles. There are four different kinds, each with a different spectrum of responses when activated, controlling diverse processes such as pain, blood flow, respiration, and sleep. Often, the different receptors can have opposite effects. For instance, some forms enhance inflammation when they bind to adenosine, but the A2A adenosine receptor reduces inflammation. This makes them quite challenging as targets for drug action, since it is important to block only the desired receptor, and not the others.

Inflammatory Responses

The A2A adenosine receptor plays an important role in controlling inflammatory responses, and thus is a target for development of anti-inflammatory drugs. For instance, a drug that binds to this receptor and activates it could be useful for the treatment of asthma and COPD (chronic obstructive pulmonary disease), two diseases where the lungs become inflamed, limiting the amount of air reaching the body. This type of drug is termed an "agonist", as opposed to "antagonists" that block the action of the target protein. Researchers have been searching for both types of drugs: agonists to activate the A2A receptor, and antagonists to block other receptors that increase inflammation.

Shifting Shapes

The new structure, solved by Ray Stevens and coworkers at PSI, captures the A2A adenosine receptor bound to an effective agonist drug (PDB entry 3qak). The receptor adopts a slightly different shape than that seen in a previous structure with an antagonist drug (PDB entry 3eml). The receptor is composed of seven helices stacked side-by-side, and these helices slide relative to one another when the drug binds. The ribose portion of the drug seems to be the key player in this motion. Both the agonist and antagonist have a similar adenine ring, but only the agonist has a typical nucleoside sugar. It interacts with the helices surrounding the binding site, shifting them by several Angstroms. This motion is propagated inside, where it is presumably sensed by G-proteins, leading to the signaling cascade. To take a closer look at this motion, the JSmol tab below displays an interactive JSmol.

The JSmol tab below displays an interactive JSmol

RNA Chaperone NMB1681 (PDB entry 3mw6)

The crystal structure was solved using a fragment of the NMB1681 that includes the RNA-binding core and a short segment of the flexible tail. In this Jmol, the cores of the six independent structures are overlapped, so you can see some of the range of motion of the flexible tail. Use the buttons to turn the structures on and off, and to look at a spacefilling representation that shows the positively-charged amino acids.

References

  1. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science Express doi:10.1126/science.1202793.

  2. Jaakola, V.-P. et al. The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211-1217 (2008).

  3. Polosa, R. and Blackburn, M. R. Adenosine receptors at targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. Trends Pharm. Sci. 30, 528-535 (2009).

  4. Jacobson, K. A. and Gao, Z.-G. Adenosine receptors as therapeutic targets. Nature Rev. Drug. Discov. 5, 247-264 (2006).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health