PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Families in Gene Neighborhoods
June 2015
Signaling: A Platform for Opposing Functions
May 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
iTRAQing the Ubiquitinome
July 2014
CAAX Endoproteases
August 2013
The Immune System: A Strong Competitor
June 2013
The Immune System: Strand Swapping for T-Cell Inhibition
June 2013
PDZ Domains
April 2013
Protein Interaction Networks: Adding Structure to Protein Networks
April 2013
Protein Interaction Networks: Morph to Assemble
April 2013
Protein Interaction Networks: Reading Between the Lines
April 2013
Protein Interaction Networks: When the Sum Is Greater than the Parts
April 2013
Alpha-Catenin Connections
March 2013
Cytochrome Oxidase
November 2012
Bacterial Phosphotransferase System
October 2012
Solute Channels
September 2012
Budding ensemble
August 2012
The machines behind the spindle assembly checkpoint
June 2012
G Protein-Coupled Receptors
May 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Anchoring's the way
February 2012
Reading out regioselectivity
December 2011
An effective and cooperative dimer
November 2011
PDZ domains: sometimes it takes two
November 2011
Raising a glass to GLIC
August 2011
A2A Adenosine Receptor
May 2011
A growing family
February 2011
FERM-ly bound
February 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
Zinc Transporter ZntB
July 2010
Zinc Transporter ZntB
July 2010
Importance of extension for integrin
June 2010
Spot protein-protein interactions… fast
March 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Urea transporter
February 2010
Two-component signaling
December 2009
ABA receptor...this time for real?
November 2009
Network coverage
November 2009
Get3 into the groove
October 2009
Guanine Nucleotide Exchange Factor Vav1 and Rho GTPase Rac1
October 2009
GPCR subunits: Separate but not equal
September 2009
Proofreading RNA
July 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
Click for cancer-protein interactions
December 2008

Research Themes Protein-protein interactions

Protein Interaction Networks: Reading Between the Lines

SBKB [doi:10.1038/sbkb.2012.136]
Technical Highlight - April 2013
Short description: An additional separation is added to LC-MS to obtain more information about quaternary structure of complexes.

LC-IMS-MS analysis results in signals separated by m/z (y axis) and drift time (x axis). Doublets are signals from heavy/light peptide pairs, but the triplet (shown above) is from a cross-linked homodimeric peptide (signals are from light-light, light-heavy, heavy-light and heavy-heavy pairs, giving a 1:2:1 ratio). Figure courtesy of Joshua Adkins.

Structural proteomics efforts have greatly benefited from the combination of cross-linking and mass spectrometry (MS). In the presence of a cross-linker, adjacent portions of proteins are linked covalently, and subsequent MS analysis identifies those neighboring fragments, providing clues about overall structure.

Complexes with multiple copies of the same protein, however, present the problem of distinguishing intra- from intermolecular cross-links: unless the identified peptides have overlapping, non-repeated sequences, the distinction cannot be made. This challenge has been addressed by mixing heavy-isotope labeled and unlabeled proteins, such that differentially labeled peptides, when cross-linked, result in a distinct MS signature. This approach, mixed-isotope cross-linking (MIX), has now been improved to uniquely identify more intermolecular cross-links.

Adkins and colleagues (Program for the Characterization of Secreted Effector Proteins partnership with MCSG) added ion mobility spectrometry (IMS) to the traditional liquid chromatography (LC)-MS analysis. A mixture of heavy isotope-labeled and unlabeled proteins was allowed to equilibrate in complexes, which was then cross-linked and digested. The resulting peptides were first separated by LC, then by IMS based on ion drift time, and finally by MS based on mass-to-charge ratio (m/z). In contrast to doublet signals arising from the heavy and light forms of unlinked peptides, cross-linked peptides have a quadruplet signal in a 1:1:1:1 ratio; homodimeric peptide pairs have a triplet signal in a 1:2:1 ratio.

LC-IMS-MS data are analogous to a two-dimensional gel, similarly allowing more information to be gleaned: the additional separation reveals data obscured in the MS-only spectrum. Indeed, comparing LC-IMS-MS data and simulated LC-MS data, the authors found that in the LC-MS-only data, signals from cross-linked peptides overlapped with those for unrelated, interfering peaks.

In this proof-of-principle work with homodimeric proteins, many multiplet peaks are distinguishable by sight. The group also developed a software application, called Cross-linking IMS, to automate the search and data analyses, a feature that will be critical for future high-throughput work with large protein complexes. To analyze such complexes using MIX-LC-IMS-MS, the authors suggest MIX-labeling a subset of subunits, or isotopically labeling the cross-linker. With any of these permutations, the additional IMS separation allows confident identification of more peptides.

Irene Kaganman

References

  1. E.D. Merkley et al. Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking.
    J. Am. Soc. Mass Spectrom. (19 February 2013). doi:10.1007/s13361-012-0565-x

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health