PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
CCR5 and HIV Infection
January 2015
HIV/AIDS: Pre-fusion Env Exposed
January 2015
HIV/AIDS: Slide to Enter
January 2015
Updating ModBase
January 2015
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Bacterial CDI Toxins
June 2014
Immunity: One Antibody to Rule Them All
June 2014
Virology: A Bat Influenza Hemagglutinin
March 2014
Virology: Making Sensitive Magic
March 2014
Virology: Visualizing Cyanophage Assembly
March 2014
Virology: Zeroing in on HBV Egress
March 2014
Viroporins
March 2014
Cas4 Nuclease and Bacterial Immunity
February 2014
Microbial Pathogenesis: A GNAT from Pseudomonas
February 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Microbiome: The Dynamics of Infection
September 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Infectious Diseases: A Pathogen Ubiquitin Ligase
May 2013
Infectious Diseases: A Shared Syringe
May 2013
Infectious Diseases: Determining the Essential Structome
May 2013
Infectious Diseases: Targeting Meningitis
May 2013
NDM-1 and Antibiotics
May 2013
Bacterial Hemophores
January 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Microbial Pathogenesis: NEAT Iron
January 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
A signal sensing switch
September 2012
Gauging needle structure
July 2012
Anthrax Stealth Siderophores
June 2012
A Pseudomonas L-serine dehydrogenase
May 2012
Pilus Assembly Protein TadZ
April 2012
Making Lipopolysaccharide
January 2012
Superbugs and Antibiotic Resistance
December 2011
A change to resistance
November 2011
An effective and cooperative dimer
November 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
Breaking down the defenses
September 2011
Moving some metal
August 2011
Capsid assembly in motion
April 2011
Know thy enemy … structurally
October 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Hemolysin BL
January 2010
Unusual cell division
October 2009
Anthrax evasion tactics
September 2009
Toxin-antitoxin VapBC-5
September 2009
Antibiotic target
August 2009
Lysostaphin
July 2009
Tackling influenza
June 2009
You look familiar: the Type VI secretion system
June 2009
Unique SARS
April 2009
Anthrax stealth molecule
March 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Antiviral evasion
October 2008
SARS connections
September 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes Infectious diseases

Bacterial Armor

SBKB [doi:10.3942/psi_sgkb/fm_2011_10]
Featured System - October 2011
Short description: Bacteria are found in nearly every corner of the world, evolving unique mechanisms to survive in their different environments.

Bacteria are found in nearly every corner of the world, evolving unique mechanisms to survive in their different environments. This diversity is apparent when we look at the cell walls of bacteria and their simpler cousins, the archaebacteria. Some decorate their surfaces with a gluey layer of polysaccharide chains, sometimes so thick that it forms a protective capsule. Others use networks of cross-linked polysaccharides and peptides to brace their membranes. Many bacteria also surround themselves with a coat of protein armor, composed of a paracrystalline array of "surface layer proteins". In the case of archaebacteria, this protein coat is the often the primary structure that surrounds and shapes the cell.

Surface Layer Proteins

On a typical bacterium, half a million surface layer proteins associate side-by-side to form a continuous shell that encloses the cell. On the inside of the shell, they bind to sugar chains on the cell surface, or in the case of archaebacteria, interact directly with the membrane. This sturdy shell has many advantages for the cell: it provides protection, and it can also assist in the gathering of nutrients and attachment to targets in the environment.

SLH Domains

Most bacterial surface layer proteins contain SLH (surface layer homology) domains that bind to sugar chains on the cell surface. Researchers at MCSG have solved the first structure of bacterial SLH domains, from the bacterium that causes anthrax, shown here from PDB entry 3pyw. The structure includes three neighboring SLH domains, which together form a triangular protein. The sugar chains are thought to bind in the grooves along the three sides. The protein also includes an additional domain, removed for this structural analysis, that interacts with other copies of the protein to form the shell.

Diverse Approaches

SHL domains, however, are not the only way to create a surface layer: other bacteria use alternative approaches. Three examples are shown here. As with the SLH structure from MCSG, these structures include only a portion of the surface layer protein, allowing crystallization and structure determination. These include proteins from two bacteria, Geobacillus stearothermophilus (PDB entry 2ra1), and Clostridium difficile (PDB entry 3cvz), and one from the archaebacterium Methanosarcina mazei (PDB entry 1l0q). They all have completely different shapes and sizes, and if you compare these structures at the RCSB Protein Data Bank you will find that they have entirely different folds.

Building on Nature

Surface layer proteins are interesting for several reasons. Since they are the primary barrier from the environment for many bacteria, they are intimately involved in the interaction of bacteria with their hosts. They mediate the flow of nutrients and may help with the attachment, and ultimate virulence, of pathogenic bacteria. SLH domains are also commonly used to attach other proteins to bacterial cell surfaces, so a structural understanding of surface layer proteins will allow modeling of other cell surface proteins. Surface layer proteins have also provided a source of inspiration for nanotech engineers. Since they are working examples of self-assembling nanoscale architecture, they are being used as a model for design of custom nanostructures.

SLH Domains of a Surface Array Protein (PDB entry 3pyw)

This structure includes the three SLH domains from Bacillus anthracis surface array protein. The three domains are very similar and fold together to form a symmetrical three-sided structure. All three domains contribute to an arrangement of three helices at the center that stabilize the whole complex. Researchers at MCSG have determined that all three are necessary to form a stable structure: if you delete one or two of the domains, it loses much of its ability to bind to polysaccharide chains.

References

  1. Kern, J., et al. Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J. Biol. Chem. 286, 26042-26049 (2011).

  2. Schuster, B. & Sleytr, U. B. Composite S-layer lipid structure. J. Struct. Biol. 168, 207-216 (2009).

  3. Engelhardt, H. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J. Struct. Biol. 160, 115-124 (2007).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health