PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
CCR5 and HIV Infection
January 2015
HIV/AIDS: Pre-fusion Env Exposed
January 2015
HIV/AIDS: Slide to Enter
January 2015
Updating ModBase
January 2015
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Bacterial CDI Toxins
June 2014
Immunity: One Antibody to Rule Them All
June 2014
Virology: A Bat Influenza Hemagglutinin
March 2014
Virology: Making Sensitive Magic
March 2014
Virology: Visualizing Cyanophage Assembly
March 2014
Virology: Zeroing in on HBV Egress
March 2014
Viroporins
March 2014
Cas4 Nuclease and Bacterial Immunity
February 2014
Microbial Pathogenesis: A GNAT from Pseudomonas
February 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Microbiome: The Dynamics of Infection
September 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Infectious Diseases: A Pathogen Ubiquitin Ligase
May 2013
Infectious Diseases: A Shared Syringe
May 2013
Infectious Diseases: Determining the Essential Structome
May 2013
Infectious Diseases: Targeting Meningitis
May 2013
NDM-1 and Antibiotics
May 2013
Bacterial Hemophores
January 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Microbial Pathogenesis: NEAT Iron
January 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
A signal sensing switch
September 2012
Gauging needle structure
July 2012
Anthrax Stealth Siderophores
June 2012
A Pseudomonas L-serine dehydrogenase
May 2012
Pilus Assembly Protein TadZ
April 2012
Making Lipopolysaccharide
January 2012
Superbugs and Antibiotic Resistance
December 2011
A change to resistance
November 2011
An effective and cooperative dimer
November 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
Breaking down the defenses
September 2011
Moving some metal
August 2011
Capsid assembly in motion
April 2011
Know thy enemy … structurally
October 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Hemolysin BL
January 2010
Unusual cell division
October 2009
Anthrax evasion tactics
September 2009
Toxin-antitoxin VapBC-5
September 2009
Antibiotic target
August 2009
Lysostaphin
July 2009
Tackling influenza
June 2009
You look familiar: the Type VI secretion system
June 2009
Unique SARS
April 2009
Anthrax stealth molecule
March 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Antiviral evasion
October 2008
SARS connections
September 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes Infectious diseases

Making Lipopolysaccharide

SBKB [doi:10.3942/psi_sgkb/fm_2012_1]
Featured System - January 2012
Short description: Many bacteria surround themselves with a protective coat, to resist attack from antibiotics, predators, and the immune system.

Many bacteria surround themselves with a protective coat, to resist attack from antibiotics, predators, and the immune system. In gram-negative bacteria like Escherichia coli, this protective coat is built primarily of lipopolysaccharides (shown here from PDB entry 1fcp), hybrid molecules with a complex carbohydrate anchored to the cell membrane with an array of lipids. These lipopolysaccharides cover roughly 3/4 of the surface of the cell and are the major barrier between the bacterium and its environment. They are also one of the major molecules recognized by our immune system: we have a dedicated system of Toll-like receptors that sense picomolar amounts of lipopolysaccharides, and mount an immediate defensive response.

Lipid Carrier

Lipopolysaccharides are built in many steps, constructing a "Lipid A" core, composed of several lipid chains attached to a few sugars, and attaching a variety of carbohydrates to it, depending on the particular strain of the bacterium. The protein shown here, solved by NESG, is thought to be involved in delivery of the lipid chains to enzymes that construct the core. It is an acyl-carrier protein (ACP), which has a covalently-attached cofactor (shown in green) that holds lipid chains (PDB entry 2kwm). Many bacteria have a single ACP that performs all of their lipid-carrying tasks. The ACP shown here, however, is a specialized protein that may play a role in delivering unusual lipids to the odd lipopolysaccharides made by the bacterium Geobacter metallireducens.

Metal Remediation

Geobacter metallireducens is one of the few bacteria that can reduce insoluble metal oxides, turning them into soluble salts. For this reason, it is being explored as a biological agent for cleaning up sites that are poisoned by toxic metals, and PSI researchers have chosen it as one of their targets, to help understand the molecular basis of its unusual abilities. Lipopolysaccharides may play a role in the bioremediation: they are important for attaching the bacterium to minerals, and may also bind to individual metal ions.

ACP in Action

The Geobacter ACP is similar to the more typical ACP made by other bacteria. They all have a deep hydrophobic pocket that holds the attached lipid while it is transported from one enzyme to another. Then, the lipid flips out of the binding pocket and inserts into the enzyme's active site. Three structures available in the PDB capture several steps in this process. The Geobacter structure (PDB entry 2kwm) shows ACP before a lipid is bound. PDB entry 2fad is the ACP from E. coli with a short 7-carbon lipid bound. In PDB entry 3ejb (shown here), E. coli ACP (blue) is delivering a longer lipid (yellow) to an enzyme that makes biotin (red). The JSmol tab below displays an interactive JSmol that shows all three of these structures.

Acyl-carrier proteins (PDB entries 2kwm, 2fad and 3ejb)

Three structures of acyl-carrier proteins are overlapped in this Jmol: one before lipid is bound (PDB entry 2kwm), one with a small lipid bound (PDB entry 2fad), and one that is delivering the lipid to an enzyme (PDB entry 3ejb). In each case, acyl-carrier protein is shown in blue with the pantetheine cofactor in green, the lipid is in yellow, and the enzyme is in red. Use the buttons to switch between the three structures, and to change the representation.

References

  1. Ramelot, T. A. et al. Solution structure of 4'-phosphopantetheine - GmACP3 from Geobacter metallireducens: a specialized acyl-carrier protein with atypical structural features and a putative role in lipopolysaccharide biosynthesis. Biochemistry 50, 1442-1453 (2011).

  2. Raetz, C. R. H. & Whitfield, C. Lipopolysaccharide endotoxins. Annual Review of Biochemistry 71, 635-700 (2002).

  3. Mahadevan, R., Palsson, B. O. & Lovley, D. R. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology 9, 39-50 (2011).

  4. Barkleit, A. Foerstendorf, H., Li, B., Rossberg, A., Moll, H. & Bernhard, G. Coordination of uranium(VI) with functional groups of bacterial lipopolysaccharide studied by EXAFS and FT-IR spectroscopy. Dalton Transactions 40, 9868-9876 (2011).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health