PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Signaling: A Platform for Opposing Functions
May 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Molecular Portraits of the Cell
February 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Updating ModBase
January 2015
Transmembrane Spans
December 2014
Mining Protein Dynamics
May 2014
Novel Proteins and Networks: Assigning Function
May 2014
Cancer Networks: Predicting Catalytic Residues from 3D Protein Structures
November 2013
The Immune System: A Brotherhood of Immunoglobulins
June 2013
The Immune System: Super Cytokines
June 2013
Infectious Diseases: Targeting Meningitis
May 2013
PDZ Domains
April 2013
Protein Interaction Networks: Adding Structure to Protein Networks
April 2013
Design and Discovery: Flexible Backbone Protein Redesign
February 2013
Pocket changes
July 2012
Predictive protein origami
July 2012
Refining protein structure prediction
March 2012
Metal mates
February 2012
Devil is in the details
January 2012
Playing while you work
November 2011
Docking and rolling
October 2011
Fit to serve
October 2011
Rosetta hone
July 2011
Structure from sequence
July 2011
An easier solution for symmetry
June 2011
Solutions in the solution
June 2011
Regulating nitrogen assimilation
January 2011
Guard cells pick up the SLAC
December 2010
Alpha/Beta Barrels
October 2010
Modeling RNA structures
May 2010
Deducing function from small structural clues
February 2010
Spot the pore
January 2010
Network coverage
November 2009
GPCR modeling: any good?
August 2009
Protein modeling made easy
July 2009
Model proteins in your lunch break
April 2009
Click for cancer-protein interactions
December 2008
Modeling with SAXS
October 2008
Designing activity
September 2008

Technology Topics Modeling

Nuclear Pore Complex: Integrative Approach to Probe Nup133

SBKB [doi:10.1038/sbkb.2014.242]
Featured Article - February 2015
Short description: The integration of three structural methods offers insight into membrane association of the NPC.

Integrative modeling of ScNup133 reveals the population weight averages of four states, a major extended conformation and three minor compact conformations. Figure from ref. 1 , © 2014 The American Society for Biochemistry and Molecular Biology.

Linking the nuclear and cytoplasmic compartments, the nuclear pore complex (NPC) is one of the cell's most essential and complex structures. Using an approach that integrates X-ray crystallography, small angle X-ray scattering (SAXS) and electron microscopy (EM) data, Almo, Rout, Sali and colleagues have produced atomic-level models for Saccharomyces cerevisiae (Sc) Nup133, a major component of the Nup84 complex in the NPC's outer ring. This work, from two PSI Centers (PSI NYSGRC and NPCXstals), aimed to solve the structure of this notoriously flexible protein and determine whether Nup133 contains a motif postulated to interact with the nuclear membrane.

Aided by the crystal structure of a related fungal VpNup13355–502 (PDB 4Q9T) and SAXS data, the authors built an initial model for full-length ScNup133. However, as the SAXS profile obtained for ScNup1332–1157 did not agree with that arising from the comparative model, the authors looked more carefully at the solution dynamics of ScNup1332–1157 and concluded that the data could only be explained by a multistate model. Comparison of the SAXS data and EM class averages resulted in a final model with four states, distinguished mainly by the relative positions of the N- and C-terminal domains; these states were confirmed by crosslinking/mass spectrometry and mutational analyses.

One feature noted in previous Nup133 structures was an unresolved loop in the seven-bladed β-propeller; it had been speculated to be an ArfGAP1 lipid packing sensor (ALPS) motif, which senses and stabilizes membrane curvature. Using a helical wheel representation, the ALPS motif was identified in ScNup133, as well as two copies in ScNup120, an ortholog that is also part of the Nup84 complex. The integrative approach outlined in this study permitted the authors to determine the structure of the major open state as well as three minor compact forms. In addition, the ability to isolate the ALPS motif in both Nup133 and Nup120 establishes how the Nup84 complex may be anchored within the nuclear envelope membrane, and rebuts the previous suggestion that only organisms with open mitosis may require such membrane contacts. These results also classify Nup133 and Nup120 as coat-like proteins, with the ALPS being an ancestral remnant of vesicle-coating complexes.

Angela K. Eggleston

References

  1. S.J. Kim et al. Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex.
    Mol Cell Proteomics 13, 2911-26 (2014). doi:10.1074/mcp.M114.040915

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health