PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

Solute Channels

SBKB [doi:10.3942/psi_sgkb/fm_2012_9]
Featured System - September 2012
Short description: Cells maintain a steady traffic of small molecules across their membranes.

Cells maintain a steady traffic of small molecules across their membranes. They use two different overall approaches. In some cases, they actively transport molecules across, using dynamic proteins that grab the molecule on one side, shift in shape, and then release the molecule on the other side. In other cases, such as the urea transporter shown here (PDB entry 4ezc), transport is more passive, with molecules filing through a channel across the membrane. In both cases, it is essential to keep the transport controlled and specific, so that only the proper molecules are allowed to cross. Channels are particularly tricky, because they need to let their cargo pass through, but without allowing protons or ions to leak across the membrane at the same time.

Channeling Potassium

The structure of the KscA potassium channel (PDB entry 1bl8) first revealed the basic methods used by channels that selectively transport soluble molecules. KscA is composed of four identical chains that surround a central channel. The channel has a narrow "selectivity filter" at the center, composed of a ring of amino acids that are finely tuned to fit potassium ions, but not other types of ions. Potassium ions, stripped of their normal shell of water molecules, file one-by-one through the filter to cross the membrane.

Structural Similarities

PSI researchers at NYCOMPS have explored many other channels, revealing a common structural solution to their challenging task. Several examples are included here, all viewed from the "top" so you can see through the channel: the potassium channel TrkH (PDB entry 3pjz), the urea transporter UT-B (PDB entry 4ezc), and the hydrosulfide ion channel FNT3 (PDB entry 3tdo). Each forms a complex composed of several chains, but unlike the KscA channel, the functional pore is not created between several chains, but instead, a channel is formed through the middle of each subunit (the large holes in the middle of the UT-B and FNT3 complexes are presumably blocked with lipids or other molecules). Like KscA, the channels rely on selectivity filters at the center to ensure that only the proper molecules pass. The channels also have a specialized collection of amino acids at the entrance and exit, which match the chemical features of the molecule that they transport.

Being Selective

The urea transporter (PDB entry 4ezd) uses a variety of chemical tricks to recognize its target molecule. At the entrance and exit to the UT-B pore, there is an "oxygen ladder" composed of three aligned oxygen atoms. These are perfectly placed for forming hydrogen bonds with urea. In addition, several large hydrophobic amino acids form a urea-shaped slot that fits the molecule perfectly. At the center of the pore, of a ring of hydrophobic amino acids (shown here in green), which is only wide enough for urea to pass, strips all the water molecules from urea before it can pass through. Based on theoretical studies, PSI researchers have proposed that this desolvation is the energy-limiting step of passage through the pore. To explore these features in more detail, click on the JSmol tab for an interactive Jmol.

Urea Transporter UT-B (PDB entry 4ezd)

The urea transporter has several structural features, collectively known as the selectivity filter, that control the flow of urea through the central pore. At the center of the pore is a constriction surrounded by hydrophobic amino acids (shown in green) that make a narrow opening just large enough for urea, but not surrounding waters. On either side of the constriction, urea is recognized and positioned by a ladder of oxygen atoms (shown in red) and several flanking hydrophobic amino acids (in

References

  1. Czyzewski, B. K. & Wang, D.-W. Identification and characterization of a bacterial hydrosulfide ion channel. Nature 483, 494-498 (2012).

  2. Levin, E. J., et al. Structure and permeation mechanism of the mammalian urea transporter. Proc. Natl. Acad. Sci. USA 109, 11194-11199 (2012).

  3. Cao, Y., et al. Crystal structure of a potassium ion transporter, TrkH. Nature 471, 336-341 (2011).

  4. Doyle, D. A., et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69-77 (1998).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health