PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons

Related Articles
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
CCR5 and HIV Infection
January 2015
HIV/AIDS: Pre-fusion Env Exposed
January 2015
HIV/AIDS: Slide to Enter
January 2015
Updating ModBase
January 2015
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Bacterial CDI Toxins
June 2014
Immunity: One Antibody to Rule Them All
June 2014
Virology: A Bat Influenza Hemagglutinin
March 2014
Virology: Making Sensitive Magic
March 2014
Virology: Visualizing Cyanophage Assembly
March 2014
Virology: Zeroing in on HBV Egress
March 2014
March 2014
Cas4 Nuclease and Bacterial Immunity
February 2014
Microbial Pathogenesis: A GNAT from Pseudomonas
February 2014
Microbial Pathogenesis: Targeting Drug Resistance in Mycobacterium tuberculosis
February 2014
Microbiome: The Dynamics of Infection
September 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Infectious Diseases: A Pathogen Ubiquitin Ligase
May 2013
Infectious Diseases: A Shared Syringe
May 2013
Infectious Diseases: Determining the Essential Structome
May 2013
Infectious Diseases: Targeting Meningitis
May 2013
NDM-1 and Antibiotics
May 2013
Bacterial Hemophores
January 2013
Microbial Pathogenesis: Computational Epitope Prediction
January 2013
Microbial Pathogenesis: Influenza Inhibitor Screen
January 2013
Microbial Pathogenesis: Measles Virus Attachment
January 2013
Microbial Pathogenesis: NEAT Iron
January 2013
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
A signal sensing switch
September 2012
Gauging needle structure
July 2012
Anthrax Stealth Siderophores
June 2012
A Pseudomonas L-serine dehydrogenase
May 2012
Pilus Assembly Protein TadZ
April 2012
Making Lipopolysaccharide
January 2012
Superbugs and Antibiotic Resistance
December 2011
A change to resistance
November 2011
An effective and cooperative dimer
November 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
Breaking down the defenses
September 2011
Moving some metal
August 2011
Capsid assembly in motion
April 2011
Know thy enemy … structurally
October 2010
Treating sleeping sickness
May 2010
Bacterial spore kinase
April 2010
Hemolysin BL
January 2010
Unusual cell division
October 2009
Anthrax evasion tactics
September 2009
Toxin-antitoxin VapBC-5
September 2009
Antibiotic target
August 2009
July 2009
Tackling influenza
June 2009
You look familiar: the Type VI secretion system
June 2009
Unique SARS
April 2009
Anthrax stealth molecule
March 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Antiviral evasion
October 2008
SARS connections
September 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes Infectious diseases

Bacterial Hemophores

SBKB [doi:10.3942/psi_sgkb/fm_2013_1]
Featured System - January 2013
Short description: PSI biology researchers are exploring the proteins that pathogenic bacteria use to gather scarce heme groups, and the iron ions they carry.

Our bodies are filled with iron: iron in hemoglobin colors our blood bright red and iron is used as a chemical tool in many cellular proteins. Altogether, we have several grams of iron scattered through our cells. Surprisingly, however, lack of iron often limits the growth of pathogenic bacteria infecting our bodies. This is by design: our bodies have evolved to guard their store of iron, so the amount of free iron circulating through the body is vanishingly small. As you might expect, however, bacteria have evolved methods to fight back and obtain the iron that is essential for their growth.


70% of our iron is found in hemoglobin, which carries oxygen in our red blood cells. This iron is bound tightly in heme, a small, planar molecule that holds the iron ion at its center. Bacteria have developed an elaborate system for gathering this hemoglobin-bound iron and delivering it into the bacterial cell. Hemophores, such as the one shown here from the bacterium that causes anthrax (PDB entry 3sik), scavenge through the blood and extract heme groups from any hemoglobin that they find.

Mining for Iron

Hemophores are assisted by a variety of other proteins. In some bacteria, hemolysins are used to break red blood cells, releasing the hemoglobin. Hemophores then bind the hemoglobin and extract the heme, as shown here at the top (PDB entry 3szk). The hemophore then binds to specific receptors (shown in green) on the bacterial cell surface, which transport the heme inside (PDB entry 3csl). Finally, inside the cell, the heme may be used in bacterial heme proteins, or it may be broken down by heme oxygenases, which release the iron as they degrade the surrounding porphyrin. Several structures of these heme-degrading enzymes have been solved by PSI researchers. Two early structures from MCSG revealed dimeric enzymes with two active sites (PDB entries 1sqe and 1xbw, not shown here). A recent structure solved by researchers at UC4CDI shows a tuberculosis heme-degrading enzyme trapped in an unusual inactive conformation with two hemes in each of the active sites, revealing the extensive flexibility of the surrounding protein (PDB entry 3hx9, shown at the bottom).

Recognizing Heme

The structure of the anthrax hemophore, solved by researchers at UC4CDI (PDB entry 3sik), reveals a binding pocket that grips the heme group. Two amino acids lock the heme in place: one tyrosine coordinates directly with the iron atom and a second tyrosine strengthens the interaction by making the coordinating tyrosine more electronegative. To look at this interaction in more detail, the JSmol tab below displays an interactive JSmol.

Anthrax Hemophore (PDB entry 3sik)

The complex of an anthrax hemophore with heme is included in this structure. Two tyrosine amino acids, shown in bright turquoise, form a specific interaction with the iron atom in the heme (shown in red). Use the buttons to view the whole protein, and to display all of the atoms.


  1. Ekworomadu, M. T. et al. Differential function of lip residues in the mechanism and biology of an anthrax hemophore. PLoS Pathogens 8, e1002559 (2012).

  2. Kumar, K. K. et al. Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH. J. Biol. Chem. 286, 38439-38447 (2011).

  3. Chim, N., Iniguez, A., Nguyen, T. Q. & Goulding, C. W. Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 395, 595- 608 (2010).

  4. Nairz, M., Schroll, A., Sonnweber, T. & Weiss, G. The struggle for iron - a metal at the host-pathogen interface. Cell. Microbio. 12, 1691-1702 (2010).

  5. Krieg, S. et al. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc. Natl. Acad. Sci. USA 106, 1045-1050 (2009).

  6. Wu, R. et al. Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. J. Biol. Chem. 280, 2840-2846 (2005).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health