PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
Nitrobindin
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
Phytochrome
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
Secretagogin
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
Aquaglyceroporin
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
T-Rex
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
Chronophin
May 2008

Research Themes Cell biology

PDZ Domains

SBKB [doi:10.3942/psi_sgkb/fm_2013_4]
Featured System - April 2013
Short description: PDZ domains are specialists in protein recognition, but PSI Biology researchers are revealing their abilities to bind to membranes as well.

Cell signaling requires the coordinated effort of hundreds of proteins. As you can imagine, it helps to have a dedicated infrastructure to organize all of this effort. In our cells, scaffolding proteins play this role, bringing together all the players so that they are in the proper place at the proper time. The scaffolds rely on a series of modular domains, which recognize each of the players and tether them together.

PDZ Modules

PDZ domains are specialists in recognizing short protein sequences. They are small modular domains, typically with 80-90 amino acids. The protein-recognition site is a groove flanked by a beta sheet on one side and an alpha helix on the other. The beta sheet is perfectly positioned so that a short peptide can zip in, forming a string of hydrogen bonds with the domain. Then, amino acids surrounding the groove can select for the target protein sequence.

PDZ Diversity

The PDZ fold is quite robust and can accommodate many mutations to recognize different peptide sequences. Our own genome contains roughly 250 different PDZ domains, arranged in 150 different proteins. The PDZ domain shown here, solved by PSI researchers at CESG (PDB entry 3lny), shows the interaction between two signaling proteins: the PDZ domain is from PTP1E (in blue) and the short peptide is from RA-GEF2 (in green). Hundreds of other examples are included in the PDB. Often, however, these structures are solved piecemeal: signalling proteins often include several PDZ domains connected by flexible linkers, making them difficult to study.

Shape and Dynamics

Recent studies using many experimental and computational techniques, including an elastic network model developed by PSI researchers at MPID, have revealed that some PDZ domains are allosteric proteins that change shape to perform their function. These studies have shown that PDZ domains are highly dynamic, with coordinated motions of individual amino acids that transmit signals from the binding site to other portions of the domain.

Prokaryotic PDZ

4fgm 3cs0

PDZ domains are far more scarce in bacteria, but you can find them if you look. They are used, for instance, in huge bacterial proteases. Two examples are shown here. On the left is an aminopeptidase composed of eight identical chains, solved recently by PSI researchers at NESG (PDB entry 4fgm). On the right is DegP, a heat shock protein that acts as a protease and a chaperone (PDB entry 3cs0). In both cases, the PDZ domains (shown in turquoise) form the glue that holds the whole complex together. In the case of DegP, the PDZ domains also interact with unfolded proteins, regulating the action of the protein.

Multitalented Modules

More recently, it has also been discovered that PDZ domains interact with lipids and membranes. The interactions, however, are very different in different types of PDZ domains. PSI researchers at NESG have tested 70 different PDZ domains, and found that over a third of them show significant binding to membranes. Study of the structures of these domains revealed several functional classes. In some cases, the lipid-binding region (shown here in turquoise) is on the opposite side from the peptide-binding groove. In these cases, we might expect that the membrane binding and peptide binding could happen at the same time. Other examples, however, have the lipid-binding amino acids forming part of the alpha helix that flanks the groove. In these cases, the domain probably can't bind to both at the same time, so membrane binding could regulate the binding to peptides, or peptide binding regulate the binding to membranes. To take a closer look at a few of these domains, click on the image for an interactive Jmol.

The JSmol tab below displays an interactive JSmol

Classes of PDZ Domains (PDB entries 3jxt, 2vsv, 2egk and 2egn)

PDZ domains fall into several classes when you look at where the lipid-binding sites are located. In SAP102, the lipid-binding amino acids (shown here in turquoise) are on the opposite side from the peptide binding site (the peptide is shown in green). In rhophilin and tamalin, the lipid-binding region is next to the peptide-binding site. Notice also that the lipid-binding amino acids on rhophilin and tamalin are on different places on the PDZ alpha helix. PSI Biology researchers have discovered

References

  1. Chen, Y. et al. Genome-wide functional annotation of dual-specificity protein- and lipid-binding modules that regulate protein interactions. Mol. Cell 46, 226-237 (2012).

  2. Ivarsson, Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Let. 586, 2638-2647 (2012).

  3. Gerek, Z. N. & Ozkan, S. B. Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning. PLoS Comp. Biol. 7, e1002154 (2011).

  4. Krojer, T., Sawa, J., Schafer, E., Saibil, H. R., Ehrmann, M. & Clausen, T. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885-892 (2008).

  5. Sugi, T., Oyama, T., Muto, T., Nakanishi, S., Morikawa, K. & Jingami, H. Crystal structures of autoinhibitory PDZ domain of tamalin: implications for metabotropic glutamate receptor trafficking regulation. EMBO J. 26, 2192-2205 (2007).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health