PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

G Proteins and Cancer

SBKB [doi:10.3942/psi_sgkb/fm_2013_11]
Featured System - November 2013
Short description: G-proteins play an essential role in cell signaling, a role that is corrupted in many types of cancer cells.

Miscommunication is the hallmark of cancer. Normally, our cells are in constant communication, deciding how to share resources, determining the best time to grow, and if necessary, the best time to die. Cancer cells, on the other hand, typically have corrupted these lines of communication, allowing them to grow without limits and selfishly steal resources for themselves. GPCRs (G-protein-coupled receptors) are among the many different molecules of communication that are changed when a normal cell is transformed into a cancer cell.

Cancer Survey

PSI researchers recently surveyed the genetic sequences of many diverse cancer cells and found that problems in the G protein signaling system are very common. Our genome encodes about 800 different GPCRs, and mutations in these are found in roughly one fifth of all cancers. Mutations in G-proteins, the proteins that relay GPCR signals inside the cell, are also very common in cancer cells.

Wrong Place at the Wrong Time

In some cases, the expression of a GPCR may be transformed in a cancer cell. For instance, CXCR4, shown here from PDB entry 3odu, is not normally found in breast cells, but is often found in breast cancer cells. CXCR4 normally helps to control the movement of cells in the immune system and during development. But when it's expressed in the wrong place, it can assist the movement of cancer cells, leading to metastasis.

Cancer Hotspots

Signaling through GPCRs occurs through subtle shifts of its helices, transmitting a signal from outside the cell to a G-protein inside. These shifts are seen in the two structures of the adrenergic receptor shown here on the left: an inactive form in green and an activated form in red, bound to a G-protein in blue (PDB entries 2rh1 and 3sn6). Two of the helices, shown here in bright green and red, show the largest motions when the signal is transmitted. As shown on the model at the right, the most common cancer-causing mutations (shown in turquoise) occur at the interfaces between these helices in a similar GPCR, the human thyroid stimulating hormone receptor, corrupting these essential motions.

Shooting the Messenger

Based on the PSI survey, the most common cancer causing mutations in G-proteins occur at the nucleotide-binding site of the alpha subunit. Two common sites of mutation are shown here in bright red, from PDB entry 1cul. This small change is enough to unhinge the normal control of the protein, which is usually turned "on" and "off" by the state of the bound nucleotide. To take a closer look at this interaction, the JSmol tab below displays an interactive JSmol.

G-protein and Adenylyl Cyclase (PDB entry 1cul)

This structure includes the alpha subunit of a G-protein (pink) bound to its signaling target, adenylyl cyclase (blue). The bound nucleotide is in green. The two amino acids in bright red, which form part of the nucleotide-binding site, are mutated in some forms of cancer.

References

  1. O'Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein- coupled receptors in cancer. Nat. Rev. Cancer 13, 412-424 (2013).

References to Structures

  1. Rassmussen, S. G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555 (2011).

  2. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066-1071 (2010).

  3. Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2- adrenergic G protein-coupled receptor. Science 318, 1258-1265 (2007).

  4. Tesmer, J. J. et al. Molecular basis for P-site inhibition of adenylyl cyclase. Biochem. 39, 14464-14471 (2000).

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health