PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Community-Nominated Targets
July 2015
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Design and Evolution: Unveiling Translocator Proteins
June 2015
Signaling with DivL
May 2015
Signaling: A Platform for Opposing Functions
May 2015
Signaling: Securing Lipid-Protein Partnership
May 2015
Dynamic DnaK
March 2015
Iron-Sulfur Cluster Biosynthesis
December 2014
Mitochondrion: Flipping for UCP2
December 2014
Mitochondrion: Setting a New TRAP1
December 2014
Power in Numbers
August 2014
Quorum Sensing: A Groovy New Component
August 2014
Quorum Sensing: E. coli Gets Involved
August 2014
iTRAQing the Ubiquitinome
July 2014
Microbiome: The Dynamics of Infection
September 2013
Protein-Nucleic Acid Interaction: A Modified SAM to Modify tRNA
July 2013
Protein-Nucleic Acid Interaction: Versatile Glutamate
July 2013
PDZ Domains
April 2013
Alpha-Catenin Connections
March 2013
Cell-Cell Interaction: A FERM Connection
March 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Modulating Self Recognition Affinity
March 2013
Bacterial Hemophores
January 2013
Archaeal Lipids
December 2012
Membrane Proteome: Capturing Multiple Conformations
December 2012
Lethal Tendencies
October 2012
Symmetry from Asymmetry
October 2012
A signal sensing switch
September 2012
Regulatory insights
September 2012
AlkB Homologs
August 2012
Budding ensemble
August 2012
Targeting Enzyme Function with Structural Genomics
July 2012
The machines behind the spindle assembly checkpoint
June 2012
Chaperone interactions
April 2012
Pilus Assembly Protein TadZ
April 2012
Revealing the Nuclear Pore Complex
March 2012
Topping off the proteasome
March 2012
Twist to open
March 2012
Disordered Proteins
February 2012
Analyzing an allergen
January 2012
Making Lipopolysaccharide
January 2012
Pulling on loose ends
January 2012
Terminal activation
December 2011
The Perils of Protein Secretion
November 2011
Bacterial Armor
October 2011
TLR4 regulation: heads or tails?
October 2011
Ribose production on demand
September 2011
Moving some metal
August 2011
Looking for lipids
July 2011
Ribofuranosyl Binding Protein
June 2011
A molecular switch for neuronal growth
May 2011
Cell wall recycler
May 2011
Added benefits
April 2011
NMR challenges current protein hydration dogma
March 2011
Nitrile Reductase QueF
March 2011
Tip formin
March 2011
Inhibiting factor
February 2011
PASK staying active
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
Nitrobindin
December 2010
Function following form
October 2010
tRNA Isopentenyltransferase MiaA
August 2010
Importance of extension for integrin
June 2010
Phytochrome
April 2010
Alg13 Subunit of N-Acetylglucosamine Transferase
February 2010
Hemolysin BL
January 2010
Secretagogin
December 2009
Two-component signaling
December 2009
Network coverage
November 2009
Pseudouridine Synthase TruA
November 2009
Unusual cell division
October 2009
Toxin-antitoxin VapBC-5
September 2009
Salicylic Acid Binding Protein 2
August 2009
Proofreading RNA
July 2009
Ykul structure solves bacterial signaling puzzle
July 2009
Hda and DNA Replication
June 2009
Controlling p53
May 2009
Mitotic checkpoint control
May 2009
Ribonuclease and Ribonuclease Inhibitor
April 2009
The elusive helicase
April 2009
Aquaglyceroporin
March 2009
High-energy storage system
February 2009
A new class of bacterial E3 ubiquitination enzymes
January 2009
Poly(A) RNA recognition
January 2009
Activating BAX
December 2008
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
New metal-binding domain
October 2008
Blocking AmtB
September 2008
T-Rex
September 2008
Aspartate Dehydrogenase
August 2008
RNase T
July 2008
Chronophin
May 2008

Research Themes Cell biology

Blocking AmtB

PSI-SGKB [doi:10.1038/fa_psisgkb.2008.4]
Featured Article - September 2008
Short description: Proc Natl Acad Sci USA 104, 42-47 (2007)

The PII signal transduction proteins are key players in metabolic regulation and are widely conserved amongst bacteria as well as some archaea and organelles in eukaryotic phototrophs. GlnK, one of the three groups of PII proteins, has many attributes of other PII proteins, including a conserved structure and the fact that it forms homotrimers. In several bacterial genomes, glnK genes are found linked to amtB, the ammonia transporter, and are involved in regulation of nitrogen metabolism at multiple levels. GlnK binds the AmtB transporter when a nitrogen source is abundant and directly inhibits ammonia transport. In addition GlnK binds and inhibits GlnA, the glutamine synthetase, under conditions of good nitrogen supply. GlnK is itself regulated, notably by the metabolite 2-KG, which overcomes its inhibition of GlnA and relieves binding to AmtB, allowing ammonia uptake and assimilation. In addition, post-translational modification regulates GlnK's ability to regulate its target. In Escherichia coli this takes the form of uridylylation of GlnK residue Y51 which prevents inhibition of AmtB, and in cyanobacteria phosphorylation of S46 may have a similar effect. In addition PII signal transducers are known to bind ATP and in the case of GlnK this augments its ability to inhibit the AmtB transporter.

Two independent studies shed light on GlnK inhibition of AmtB by solving the crystal structure of the co-complex. Stroud and colleagues (PNAS 10442–47 (2007)) solved the structure to 1.96 Å, while Winkler and colleagues (PNAS 1041213–18 (2007)) did so to 2.5 Å. In both cases GlnK was seen to bind in the trimeric form to the AmtB homotrimer. Key to the interaction is the T-loop of GlnK, the base of which forms the nucleotide interaction site with B- and C-loops at the interfaces of monomers in the GlnK trimer. In the complex the T-loop of each GlnK monomer extends into cytoplasmic vestibule of each AmtB monomer. While additional ammonia molecules are seen in AmtB compared to the non-GlnK bound structure and ordering is seen on the cytosolic face of the transporter as well as the GlnK T-loop itself, the overall structures of the AmtB and GlnK are similar in the complex to their unbound forms. The T-loop insert brings R47 into the transporter vestibule, blocking the AmtB channel and suggesting that this residue directly inhibits transport. The papers also suggest why uridylylation at Y51 inhibits AmtB function: this modification would sterically prevent this residue's predicted intimate interaction with the transporter. While neither study supplied ADP, surprisingly it was this rather than ATP that was found at the interfaces of the GlnK monomers, and Stroud and colleagues suggest that either a trace contaminant with ATPase activity was present, or that the GlnK complex itself may be hydrolyzing the ATP, a possibility hinted at by the identity of residues surrounding the ADP but that awaits further study. Stroud and colleagues also gained potential insights into regulation by the 2-KG metabolite, using docking to suggest that its binding might affect the conformation of the T-loop and thus affect interaction with AmtB. Altogether the structures provide a number of insights into the mechanism underlying ammonia transport inhibition by GlnK, as well the complex regulation of their interaction.

Sabbi Lall

References

  1. Franz Gruswitz, Joseph O'Connell, III and Robert M. Stroud Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 Å.
    Proc Natl Acad Sci USA 104, 42-47 (2007). doi:10.1073/pnas.0609796104

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health