PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Drug Discovery: Solving the Structure of an Anti-hypertension Drug Target
July 2015
Retrospective: 7,000 Structures Closer to Understanding Biology
July 2015
Families in Gene Neighborhoods
June 2015
Channels and Transporters: BEST in Show
April 2015
Channels and Transporters: Reorienting a Peptide in the Pocket
April 2015
Ryanodine Receptor
April 2015
Protein Folding and Misfolding: It's the Journey, Not the Destination
March 2015
Protein Folding and Misfolding: Refolding in Membrane Mimetic
March 2015
Nuclear Pore Complex: A Flexible Transporter
February 2015
Nuclear Pore Complex: Higher Resolution of Macromolecules
February 2015
Nuclear Pore Complex: Integrative Approach to Probe Nup133
February 2015
Piecing Together the Nuclear Pore Complex
February 2015
Mitochondrion: Flipping for UCP2
December 2014
Transmembrane Spans
December 2014
Glucagon Receptor
April 2014
Membrane Proteome: A Cap on Transport
April 2014
Membrane Proteome: Microcrystals Yield Big Data
April 2014
Membrane Proteome: Pumping Out Heavy Metal
April 2014
Design and Discovery: Virtual Drug Screening
January 2014
G Proteins and Cancer
November 2013
Drug Discovery: Antidepressant Potential of 6-NQ SERT Inhibitors
October 2013
Drug Discovery: Modeling NET Interactions
October 2013
Microbiome: Solid-State NMR, Crystallized
September 2013
CAAX Endoproteases
August 2013
Membrane Proteome: A Funnel-like Viroporin
August 2013
Membrane Proteome: GPCR Substrate Recognition and Functional Selectivity
August 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Membrane Proteome: Unveiling the Human α-helical Membrane Proteome
August 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Cell-Cell Interaction: Nanoparticles in Cell Camouflage
March 2013
Membrane Proteome: Capturing Multiple Conformations
December 2012
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Sphingolipid Synthesis Selectivity
December 2012
Membrane Proteome: Tuning Membrane Protein Expression
December 2012
Cytochrome Oxidase
November 2012
Membrane Proteome: Building a Carrier
November 2012
Membrane Proteome: Every Protein Has Its Tag
November 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Membrane Proteome: The ABCs of Transport
November 2012
Bacterial Phosphotransferase System
October 2012
Insert Here
October 2012
Solute Channels
September 2012
To structure, faster
August 2012
Pocket changes
July 2012
Predictive protein origami
July 2012
G Protein-Coupled Receptors
May 2012
Twist to open
March 2012
Anchoring's the way
February 2012
Overexpressed problems
February 2012
Gentle membrane protein extraction
January 2012
Docking and rolling
October 2011
A fragmented approach to membrane protein structures
September 2011
Raising a glass to GLIC
August 2011
Sugar transport
June 2011
A2A Adenosine Receptor
May 2011
TrkH Potassium Ion Transporter
April 2011
Subtly different
March 2011
A new amphiphile for crystallizing membrane proteins
January 2011
CXCR4
January 2011
Guard cells pick up the SLAC
December 2010
ABA receptor diversity
November 2010
COX inhibition: Naproxen by proxy
November 2010
Zinc Transporter ZntB
July 2010
Formate transporter or channel?
March 2010
Tips for crystallizing membrane proteins in lipidic mesophases
February 2010
Urea transporter
February 2010
Five good reasons to use single protein production for membrane proteins
January 2010
Membrane proteins spotted in their native habitat
January 2010
Spot the pore
January 2010
Get3 into the groove
October 2009
GPCR subunits: Separate but not equal
September 2009
GPCR modeling: any good?
August 2009
Surviving in an acid environment
August 2009
Tips for crystallizing membrane proteins
June 2009
You look familiar: the Type VI secretion system
June 2009
Bacterial Leucine Transporter, LeuT
May 2009
Aquaglyceroporin
March 2009
Death clusters
March 2009
Protein nanopores
March 2009
Transporter mechanism in sight
February 2009
A pocket guide to GPCRs
December 2008
Tuning membrane protein overexpression
October 2008
Blocking AmtB
September 2008

Research Themes Membrane proteins

Tuning membrane protein overexpression

PSI-SGKB [doi:10.1038/th_psisgkb.2008.9]
Technical Highlight - October 2008
Short description: Proc. Natl Acad. Sci. USA 105, 14371-14376 (2008)

Production of membrane proteins for in vitro experiments can be very difficult. Escherichia coli is the most commonly used organism for overexpression of recombinant proteins, and although high concentrations of recombinant membrane proteins can be achieved, they often end up in inclusion bodies.

Wagner et al. have a solution. They have engineered a strain of E. coli, called Lemo21(DE3), in which overexpression can be precisely controlled. With it they achieved high yields, not through ramping up overexpression levels in individual bacteria, but by ensuring good overall growth and ultimately a higher biomass than achieved with other strains.

In the commonly used E. coli strain BL21(DE3), the bacteriophage T7 RNA polymerase (T7RNAP) usually drives recombinant protein production. T7RNAP is in turn controlled by the strong promoter lacUV5. But most overexpressed membrane proteins end up in the cytoplasm and in aggregates, which are often toxic to the cell. The accumulations are thought to be because the Sec protein, which mediates the translocation and integration of secreted proteins across or into the cytoplasmic membrane, becomes swamped and stops working.

So Wagner et al. turned to the Walker strains of E. coli. These are known to produce a good yield of membrane protein, and the overexpressed proteins do not seem to be particularly toxic to the cell. But the reason for this was not clear.

Membrane protein overexpression in E. coli Lemo21(DE3) compared with five different commonly used E. coli strains with different concentrations of L-rhamnose (rha).

Analysis of Walker strains overexpressing the membrane protein YidC revealed the key mutations in the lacUV5 promoter that led to improved protein expression. Wagner et al. then used this information to engineer a BL21(DE3) derivative strain – Lemo21 (DE3) – in which activity of T7RNAP can be precisely controlled by its natural inhibitor T7 lysozyme (T7Lys). They put T7Lys under the control of an L-rhamnose-inducible promoter (rhaBAD), so that adding L-rhamnose in different amounts to the cultures resulted in different and scalable concentrations of YidC.

Use of Lemo21(DE3) should simplify membrane protein overexpression. It requires only a single strain and a simple titration of L-rhamnose and therefore could be well suited to high-throughput applications. Notably, ongoing studies indicate that Lemo21(DE3) also performs very well for the overexpression of 'difficult' soluble proteins.

Maria Hodges

References

  1. Samuel Wagner, Mirjam M Klepsch, Susan Schlegel, Ansgar Appel, Roger Draheim et al. Tuning Escherichia coli for membrane protein overexpression.
    Proc. Natl Acad. Sci. USA 105, 14371-14376 (2008). doi:10.1073/pnas.0804090105

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health