PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons
E-Collection

Related Articles
Cas4 Nuclease and Bacterial Immunity
February 2014
Protein-Nucleic Acid Interaction: Inhibition Through Allostery
July 2013
Stabilizing DNA Single Strands
July 2013
AlkB Homologs
August 2012
Methyl maintenance
May 2012
Follow the RNA leader
December 2011
RNA Chaperone NMB1681
July 2011
Seeing HetR
July 2011
Structure from sequence
July 2011
Added benefits
April 2011
Nitrile Reductase QueF
March 2011
Inhibiting factor
February 2011
Tryptophanyl-tRNA Synthetase
February 2011
Regulating nitrogen assimilation
January 2011
Subtle shifts
January 2011
tRNA Isopentenyltransferase MiaA
August 2010
Mre11 Nuclease
May 2010
Seek and destroy 8-oxoguanine
May 2010
Antibiotics and Ribosome Function
March 2010
Pseudouridine Synthase TruA
November 2009
Get3 into the groove
October 2009
Guanine Nucleotide Exchange Factor Vav1 and Rho GTPase Rac1
October 2009
Proofreading RNA
July 2009
Hda and DNA Replication
June 2009
The elusive helicase
April 2009
Poly(A) RNA recognition
January 2009
Scavenger Decapping Enzyme DcpS
November 2008
Bacteriophage Lambda cII Protein
October 2008
RNase T
July 2008
SARS Coronavirus Nonstructural Protein 1
June 2008

Research Themes DNA and RNA

Scavenger Decapping Enzyme DcpS

PSI-SGKB [doi:10.3942/psi_sgkb/fm_2008_11]
Featured System - November 2008
Short description: Messenger RNA molecules are temporary molecules.

Messenger RNA molecules are temporary molecules. They typically last about ten hours in our cells, but this lifespan varies widely between different messages. Some encode proteins with central housekeeping tasks, such as the enzymes of biosynthesis and catabolism, and can last for days in the cytoplasm. Others encode proteins with more time-dependent tasks, such as transcription factors, and last for only minutes before they are destroyed. The amount of a particular messenger RNA is modulated both at the beginning of its life, by controlling the amount that is transcribed from the DNA, and by controlling how fast it is degraded when it is no longer needed.

Degrading and Decapping

Messenger RNA molecules are protected at both of their ends. The front end is protected by a molecular "cap" composed of an oddly-connected, methylated guanine. The tail end of the strand is protected by a long string of adenine nucleotides. Cells use two different pathways to destroy messenger RNA, which use two different approaches to overcome these protections. Both pathways begin when the polyadenine tail is removed from the end of the messenger RNA, but they have different ways of dealing with the cap. One pathway attacks the cap immediately, using a dedicated enzyme to remove the cap and then using an exoribonuclease to chew the strand away one nucleotide at a time, start to finish. The other pathway leaves the cap until the end. First, exosomes clip away nucleotides from the end of the RNA strand. The exosome, however, has trouble finishing its task and leaves a short RNA strand with the capped guanine still intact. This is where the scavenger decapping enzyme DcpS comes in. It takes short, capped oligonucleotides and breaks off the terminal cap, finishing the job of degradation.

Decapping Machine

DcpS is a dimeric protein complex with several moving parts. Each protein chain folds to form two large domains connected by flexible linkers, which then assemble side-by-side to form an enzyme with two active sites, located in the large grooves between the domains. The N-terminal domain, shown at the top here, grips the neighboring subunit with an extensive domain swapped interaction, gluing the entire complex together. When the protein is not bound to substrates, it forms a symmetrical structure, as first revealed in the structure of the mouse DcpS solved by the PSI Joint Centers for Structural Genomics (PDB entry 1vlr, shown at the top).

The Search for Inhibitors...

Structures of DcpS with substrates and with inhibitors have shown that the N-terminal domain rocks back and forth, closing the active site around the substrate on one side, and then opening when the reaction is finished. The first inhibitor structures were recently solved with the help of the PSI Accelerated Technologies Center for Gene to 3D Structure. In these structures, such as PDB entry 3bla shown in the Jmol image below, one active site is closed tightly around an inhibitor molecule, and the other side is trapped in an open, catalytically-incompetent conformation.

...And Drugs

These inhibitors were found as part of a targetted search for drugs to fight spinal muscular atrophy. This disease is the most common cause of hereditary infant death, and is caused by defects in the SMN1 gene. Surprisingly, there is a second gene, SMN2, that can substitute for the SMN1 gene if it is activated over its normal levels. It was found that these inhibitors activate the SMN2 gene by blocking the action of DcpS, ultimately leading to increased levels of SMN messenger RNA.

The JSmol tab below displays an interactive JSmol.

CBS Domain Protein TA0289

TA0289 is a dimer of identical subunits. The two CBS domains, colored darker blue here, link the two chains together. The two zinc ribbon domains, colored turquoise, extend on opposite sides of the complex. The four cysteine amino acids in each zinc ribbon, whose sulfur atoms are represented as yellow spheres, coordinate an iron atom, shown here as a reddish sphere.

References

  1. Singh J, Salcius M, Liu SW, Staker BL, Mishra R, Thurmond J, Michaud G, Mattoon DR, Printen J, Christensen J, Bjornsson JM, Pollok BA, Kiledjian M, Stewart L, Jarecki J, Gurney ME. (2008) DcpS as a Therapeutic Target for Spinal Muscular Atrophy. ACS Chemical Biology, epub ahead of print.

  2. Han GW, Schwarzenbacher R, McMullan D, Abdubek P, Ambing E, Axelrod H, Biorac T, Canaves JM, Chiu HJ, Dai X, Deacon AM, DiDonato M, Elsliger MA, Godzik A, Grittini C, Grzechnik SK, Hale J, Hampton E, Haugen J, Hornsby M, Jaroszewski L, Klock HE, Koesema E, Kreusch A, Kuhn P, Lesley SA, McPhillips TM, Miller MD, Moy K, Nigoghossian E, Paulsen J, Quijano K, Reyes R, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA. (2005) Crystal Structure of an Apo mRNA Decapping Enzyme (DcpS) from Mouse at 1.83 A Resolution. Proteins 60, 797-802.

  3. Liu H, Kiledjian M (2006) Decapping the Message: A Beginning or an End. Biochemical Society Transactions 34, 35-38.

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health